Math 410
Assignment 2

Reading: Textbook pp 8-18.
Practice problems: (don't hand these in)

1. Textbook page 28 , problem $13(\mathrm{a}),(\mathrm{b})$
2. Textbook page 28 , problem 16 (a),(d) (It is allowed to use the result of problem 17 to do these, if you wish.)
3. Consider the function $f(z)=(z+1) /(z-1)$. What are the images of the x and y (real and imaginary) axes under the map defined by this function? Where to they intersect? At what angle(s)?
4. Let $u(x, y)$ be a function that satisfies Laplace's equation, $\Delta u=0$, and let

$$
f=\frac{\partial u}{\partial x}+i \frac{\partial u}{\partial y}
$$

Show that f is holomorphic.
5. Find the holomorphic function of $z=x+i y$ whose real part is $x^{3}-3 x y^{2}$

Problems to hand in:

1. Textbook page 28 , problem 13 (c)
2. Textbook page 28, problam $16(\mathrm{c}),(\mathrm{e}),(\mathrm{f})$ (It is allowed to use the result of problem 17 to do these, if you wish.)
3. Textbook page 29 , problem 17
4. Textbook page 29 , problem 19 (for (c), you may use the result of problem 14 without proof).
5. Find the holomorphic function of $z=x+i y$ whose real part is $e^{x} \sin y$.
6. Find (all) the values of $2^{i}, \sin \left(\frac{\pi}{4}+i\right)$.
7. Solve the equation $\sin z=2$.
8. Let a be any positive number. Show that $f(z)=\tan z$ is bounded in the half-plane $\Im(z)>a$ (here, $\Im(z)$ means the imaginary part of z).
