Reading: Textbook, rest of Chapter 1, first two sections of Chapter 2
Practice problems: (don't hand these in)

1. Compute

$$
\int_{\gamma} x d z
$$

where γ is the directed line segment from 0 to $1+i$.
2. Compute

$$
\int_{|z|=r} x d z
$$

where the circle is traversed in the positive direction (i.e., counterclockwise), in two ways. First, use a parametrization and second by observing that $x=\frac{1}{2}(z+\bar{z})=\frac{1}{2}\left(z+\frac{r^{2}}{z}\right)$ on the circle.
3. Compute

$$
\int_{|z|=2} \frac{d z}{z^{2}-1}
$$

where the circle is traversed in the positive direction.
4. Textbook page 30 , problem 25 (b)

Problems to hand in:

1. Suppose that $f(z)$ is analytic and that $f^{\prime}(z)$ is continuous in a region that contains the closed curve γ. Show that

$$
\int_{\gamma} \overline{f(z)} f^{\prime}(z) d z
$$

is purely imaginary.
2. Assume that $f(z)$ is analytic and satisfies the inequality $|f(z)-1|<1$ in a region Ω. Show that

$$
\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=0
$$

for every closed curve γ in Ω.
3. If $P(z)$ is a polynomial and C denotes the circle $|z-a|=R$, what is the value of

$$
\int_{C} P(z) d \bar{z} ?
$$

4. Textbook page 30, problem 25 (a),(c)
