Reading: Textbook, Chapter 2, pp 32-45, then preview 45-53.
Practice problems: (don't hand these in)

1. Calculate $\int_{\gamma} e^{\pi z} d z$ where γ is any curve that starts at $z=i$ and ends at $z=i / 2$.
2. Ditto for $\int_{\gamma} \cos \frac{z}{2} d z$ except γ is any curve that starts at $z=0$ and ends at $z=\pi+2 i$.
3. Ditto for $\int_{\gamma} \frac{d z}{z}$, where γ is any curve that starts at $z=-2 i$ and ends at $z=2 i$, and that (except for the endpoints) is contained entirely in the right half-plane (where the real part of z is positive). Why do we need this assumption? What if we change it to left half-plane?

Problems to hand in:

1. Textbook page 64 , problems $2,3,4$.
2. Explain carefully why $\int_{-\infty}^{\infty} \frac{x^{2}+4-3 i}{(x+2 i)^{4}} d x=0$ (where x is real even if the integrand isn't).
3. Show that if $z_{1} \neq 0, z_{2} \neq 0$, then

$$
\int_{\gamma} \frac{d z}{z^{2}}=\frac{1}{z_{1}}-\frac{1}{z_{2}},
$$

where γ is any curve contained in a simply-connected domain which does not contain the origin. Then show how it follows that for any closed contour γ that does not pass through the origin,

$$
\int_{\gamma} \frac{d z}{z^{2}}=0
$$

4. Explain why $\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x$ converges provided α is any complex number with positive real part. (This expression defines the Gamma function $\Gamma(\alpha)$ for these values of α.)
