Reading: Textbook, Chapter 2, pp 53-60, then look through 60-64, then read 71-83.
Practice problems: (don't hand these in)

1. Textbook page 65 , problem 6,10 (consider \bar{z})
2. Textbook page 103 , problems 1 and 2
3. Show that $\int_{-\infty}^{\infty} \frac{x^{2}-x+2}{x^{4}+10 x^{2}+9} d x=\frac{5 \pi}{12}$.
4. Show that if $a>0$, then $\int_{-\infty}^{\infty} \frac{x^{6}}{\left(a^{4}+x^{4}\right)^{2}} d x=\frac{3 \sqrt{2} \pi}{16 a}$
5. Show that if a function $f(z)$ is holomorphic in the entire complex plane, and if there is a constant $M>0$ so that $|f(z)| \leq M|z|$ for all z, then f must be a linear function (use the idea in the proof of Liouville's theorem).

Problems to hand in:

1. Textbook page 65 , problems $7,8,9,11,12$
2. Textbook page 103 , problames $3,4,5$
3. Calculate $\int_{0}^{\infty} \frac{x^{2}}{x^{4}+6 x^{2}+13} d x$ (the answer might be $\frac{\pi}{4}\left(\frac{3+\sqrt{13}}{2}\right)^{-1 / 2}$).
4. Calculate $\int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+a^{2}\right)^{3}} d x$ for a real (the answer might be $\frac{\pi}{16 a^{3}}$).
5. Show that if $f(z)$ is holomorphic in the entire plane, and if there is a constant $M>0$ and a positive integer n so that $|f(z)| \leq M|z|^{n}$, then f must be a polynomial.
6. Show that the sum of the series

$$
\frac{z}{1-z}+\frac{z}{z^{2}-1}+\frac{z^{2}}{z^{4}-1}+\frac{z^{4}}{z^{8}-1}+\cdots
$$

is 1 for $|z|<1$, but is 0 for $|z|>1$. Does this contradict the principle of analytic continuation?

