Math 410
 Assignment 7 (Last one!)

Dr. DeTurck
Due Thursday, December 10, 2009

Reading: Textbook, bits of chapters 5, 6 and 8 - chapter 5 on infinite products, chapter 6 on the gamma function and chapter 8 on the basics of conformal mapping (not the Riemann mapping theorem).

Problems to hand in:

1. Textbook page 154 , problems 6,8 and 10
2. Some practice with infinite products: Show that
(a) $\prod_{n=2}^{\infty}\left(1-\frac{1}{n^{2}}\right)=\frac{1}{2}$
(b) $\prod_{n=2}^{\infty}\left(1-\frac{2}{n(n+1)}\right)=\frac{1}{3}$
(c) $\prod_{n=2}^{\infty}\left(1-\frac{2}{n^{3}+1}\right)=\frac{2}{3}$
(Part of the problem in each case is to verify convergence!)
3. Recall that

$$
\frac{1}{\Gamma(z)}=z e^{\gamma z} \prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right) e^{-z / n}
$$

where γ is Euler's constant

$$
\gamma=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}-\ln n\right)
$$

Prove Euler's formula:

$$
\Gamma(z)=\frac{1}{z} \prod_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{z}\left(1+\frac{z}{n}\right)^{-1}
$$

as follows: Use the definition of $1 / \Gamma(z)$ given above, except write the infinite product as a limit of partial products. Now, you will have that both γ and the infinite product are limits as $N \rightarrow \infty$. Put the two limits together, and somewhere along the way notice that

$$
\prod_{k=1}^{n-1}\left(1+\frac{1}{k}\right)=n
$$

to reach the conclusion.
4. (This is also textbook p. 174, problem 1): Prove Euler's other formula:

$$
\Gamma(z)=\lim _{n \rightarrow \infty} \frac{n!n^{z}}{z(z+1) \cdots(z+n)}
$$

(Hint: This follows pretty directly by considering the partial products of the previous problem - how's that for alliteration?)
5. Now prove that

$$
\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t
$$

as follows:
Let $G(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t$.
(a) If $F_{n}(z)=\int_{0}^{n}\left(1-\frac{t}{n}\right)^{n} t^{z-1} d t$, make the change of variables $s=t / n$ and integrate by parts repeatedly to show that

$$
F_{n}(z)=\frac{n!n^{z}}{z(z+1) \cdots(z+n)}
$$

so that by the previous problem, $\lim _{n \rightarrow \infty} F_{n}(z)=\Gamma(z)$.
(b) Now we'd like to use $\lim _{n \rightarrow \infty}\left(1-\frac{t}{n}\right)^{n}=e^{-t}$ to show that $\Gamma(z)=G(z)$, but we have to be careful about the n in the upper limit of $F_{n}(z)$ as well as the n in the integrand.
Note that

$$
G(z)-\Gamma(z)=\lim _{n \rightarrow \infty}\left(\int_{0}^{n}\left[e^{-t}-\left(1-\frac{t}{n}\right)^{n}\right] t^{z-1} d t+\int_{n}^{\infty} e^{-t} t^{z-1} d t\right)
$$

(i) Explain why the second integral approaches zero as $n \rightarrow \infty$.
(ii) Prove that if $0 \leq t \leq n$, then

$$
0 \leq e^{-t}-\left(1-\frac{t}{n}\right)^{n} \leq \frac{t^{2} e^{-t}}{n}
$$

(iii) Use (ii) to show

$$
\left|\int_{0}^{n}\left[e^{-t}-\left(1-\frac{t}{n}\right)^{n}\right] t^{z-1} d t\right| \leq \int_{0}^{n} \frac{e^{-t} t^{\operatorname{Re} z+1}}{n} d t \leq \frac{1}{n} \int_{0}^{\infty} e^{-t} t^{\operatorname{Re} z+1} d t
$$

which approaches zero as $n \rightarrow \infty$ provided $\operatorname{Re} z>0$, because the last integral is finite (before you divide it by n).
6. Out-Legendre Legendre: Show that

$$
\Gamma(3 z)=\frac{3^{3 z-1 / 2}}{2 \pi} \Gamma(z) \Gamma(z+1 / 3) \Gamma(z+2 / 3)
$$

(Hint: What are the poles of $\Gamma(3 z)$?)
7. If z_{0} is a critical point of $f(z)$, and m is the smallest integer such that $f^{(m)}\left(z_{0}\right) \neq 0$, then the mapping given by f multiples angles at z_{0} by a factor of m. (Hint: Taylor's theorem!)
8. Find the streamlines for the flow in a wedge of angle $\pi / 4$ if the flow comes in along one ray and goes out along the other.
9. Textbook page 249 problem 8

