Math 410 Assignment 7 (Last one!)

Dr. DeTurck Due Thursday, December 10, 2009

Reading: Textbook, bits of chapters 5, 6 and 8 – chapter 5 on infinite products, chapter 6 on the gamma function and chapter 8 on the basics of conformal mapping (not the Riemann mapping theorem).

Problems to hand in:

- 1. Textbook page 154, problems 6, 8 and 10
- 2. Some practice with infinite products: Show that

(a)
$$\prod_{n=2}^{\infty} \left(1 - \frac{1}{n^2}\right) = \frac{1}{2}$$

(b) $\prod_{n=2}^{\infty} \left(1 - \frac{2}{n(n+1)}\right) = \frac{1}{3}$
(c) $\prod_{n=2}^{\infty} \left(1 - \frac{2}{n^3 + 1}\right) = \frac{2}{3}$

(Part of the problem in each case is to verify convergence!)

3. Recall that

$$\frac{1}{\Gamma(z)} = z e^{\gamma z} \prod_{n=1}^{\infty} \left(1 + \frac{z}{n} \right) e^{-z/n}$$

where γ is Euler's constant

$$\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n \right)$$

Prove Euler's formula:

$$\Gamma(z) = \frac{1}{z} \prod_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^z \left(1 + \frac{z}{n}\right)^{-1}$$

as follows: Use the definition of $1/\Gamma(z)$ given above, except write the infinite product as a limit of partial products. Now, you will have that both γ and the infinite product are limits as $N \to \infty$. Put the two limits together, and somewhere along the way notice that

$$\prod_{k=1}^{n-1} \left(1 + \frac{1}{k} \right) = n$$

to reach the conclusion.

4. (This is also textbook p. 174, problem 1): Prove Euler's other formula:

$$\Gamma(z) = \lim_{n \to \infty} \frac{n! n^z}{z(z+1) \cdots (z+n)}.$$

(Hint: This follows pretty directly by considering the partial products of the previous problem – how's that for alliteration?)

5. Now prove that

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \, dt$$

as follows:

Let
$$G(z) = \int_0^\infty t^{z-1} e^{-t} dt.$$

(a) If $F_n(z) = \int_0^n \left(1 - \frac{t}{n}\right)^n t^{z-1} dt$, make the change of variables s = t/n and integrate by parts repeatedly to show that

$$F_n(z) = \frac{n!n^z}{z(z+1)\cdots(z+n)}$$

so that by the previous problem, $\lim_{n \to \infty} F_n(z) = \Gamma(z)$.

(b) Now we'd like to use $\lim_{n\to\infty} \left(1 - \frac{t}{n}\right)^n = e^{-t}$ to show that $\Gamma(z) = G(z)$, but we have to be careful about the *n* in the upper limit of $F_n(z)$ as well as the *n* in the integrand. Note that

$$G(z) - \Gamma(z) = \lim_{n \to \infty} \left(\int_0^n \left[e^{-t} - \left(1 - \frac{t}{n} \right)^n \right] t^{z-1} dt + \int_n^\infty e^{-t} t^{z-1} dt \right).$$

- (i) Explain why the second integral approaches zero as $n \to \infty$.
- (ii) Prove that if $0 \le t \le n$, then

$$0 \le e^{-t} - \left(1 - \frac{t}{n}\right)^n \le \frac{t^2 e^{-t}}{n}.$$

(iii) Use (ii) to show

$$\left| \int_0^n \left[e^{-t} - \left(1 - \frac{t}{n} \right)^n \right] t^{z-1} dt \right| \le \int_0^n \frac{e^{-t} t^{\operatorname{Re} z+1}}{n} dt \le \frac{1}{n} \int_0^\infty e^{-t} t^{\operatorname{Re} z+1} dt$$

which approaches zero as $n \to \infty$ provided $\operatorname{Re} z > 0$, because the last integral is finite (before you divide it by n).

6. Out-Legendre Legendre: Show that

$$\Gamma(3z) = \frac{3^{3z-1/2}}{2\pi} \Gamma(z) \Gamma(z+1/3) \Gamma(z+2/3).$$

(Hint: What are the poles of $\Gamma(3z)$?)

- 7. If z_0 is a critical point of f(z), and m is the smallest integer such that $f^{(m)}(z_0) \neq 0$, then the mapping given by f multiples angles at z_0 by a factor of m. (Hint: Taylor's theorem!)
- 8. Find the streamlines for the flow in a wedge of angle $\pi/4$ if the flow comes in along one ray and goes out along the other.
- 9. Textbook page 249 problem 8