Math 410
 Hints and Answers for Practice Problems for Midterm 1

Dr. DeTurck
October 9, 2009

1. For which values of z is $z^{2}=|z|^{2}$? For which values of z is $z^{2}=i|z|^{2}$?

If $z^{2}=z \bar{z}$, either $z=0$ or else $z=\bar{z}$. In other words, z is real. For $z^{2}=i|z|^{2}$, write $z=r e^{i \theta}$ in polar form, and get that either $r=0$ or else $e^{i \theta}=e^{i(\pi / 2-\theta)}$, so $\theta=\pi / 4+k \pi$, in other words the real and imaginary parts of z must be equal.
2. Let $f(z)=z+1 / z$. What is the image of the unit circle under the mapping defined by f ? The unit circle is $z=e^{i \theta}$, and $f\left(e^{i \theta}\right)=e^{i \theta}+e^{-i \theta}=2 \cos \theta$. Since θ is real, we get that the image of the unit circle is the real interval $[-2,2]$.
3. On the domain $\{z=x+i y, 0 \leq x \leq 2 \pi, 0 \leq y \leq 2 \pi\}$, what is the maximum value of $|\cos z|$?
A computation shows that $|\cos z|^{2}=\cos ^{2} x \cosh ^{2} y+\sin ^{2} x \sinh ^{2} y$. The only critical points of this function on the square in question all have $y=0$, so we need only look on the boundary of the square.
So let $\phi=|\cos z|^{2}$. When $y=0, \phi=\cos ^{2} x$ so the max is 1 . If $x=0$ or $x=2 \pi$, then $\phi=\cosh ^{2} y$, and the max occurs at $y=2 \pi$ and is $\cosh ^{2}(2 \pi)$. And since $\sinh ^{2} 2 \pi<\cosh ^{2} 2 \pi$, ϕ never gets any bigger than this on the line $y=2 \pi$. Thus the max of $|\cos z|$ is $\cosh 2 \pi$, which occurs at $z=2 \pi i, \pi+2 \pi i, 2 \pi+2 \pi i$.
4. Let $u(x, y)=2 x-x y$. Find a function $v(x, y)$ so that

$$
f(x+i y)=u(x, y)+i v(x, y)
$$

is a holomorphic function. Express $f(z)$ in terms of z alone.
Need $v_{y}=u_{x}=2-y$, so $v=2 y-y^{2} / 2+f(x)$. Also need $v_{x}=-u_{y}=x$, so $f(x)=x^{2} / 2+c$. Thus (up to adding a constant)

$$
f=2 x-x y+i\left(x^{2} / 2-y^{2} / 2+2 y\right)=2 z-i z^{2} / 2
$$

5. Find all the solutions of $\sin z=\sqrt{3}$.

This is the same as $q-1 / q=2 i \sqrt{3}$, where $q=e^{i z}$. Solve the resulting quadratic equation and get $q=i(\sqrt{3} \pm 2)$. So

$$
z=-i \ln q=(\pi / 2+2 k \pi)-i \ln (2+\sqrt{3})
$$

or

$$
z=-i \ln q=(-\pi / 2+2 k \pi)-i \ln (2-\sqrt{3}) .
$$

6. Calculate $\int_{\gamma} \bar{z} d z, \int_{\gamma} \frac{d z}{\bar{z}}$, where γ is the unit circle, traversed once in the counterclockwise direction.
Let $z=e^{i \theta}$, note $\bar{z}=e^{-i \theta}$ and $d z=i e^{i \theta} d \theta$. Substitute, integrate and get

$$
\int_{\gamma} \bar{z} d z=2 \pi i
$$

and

$$
\int_{\gamma} \frac{d z}{\bar{z}}=0
$$

7. Give an example of a (nontrivial) simple closed curve γ for which

$$
\int_{\gamma} \frac{d z}{z^{2}+z+1}=0
$$

and another for which

$$
\int_{\gamma} \frac{d z}{z^{2}+z+1} \neq 0
$$

What is the value of the second integral over your curve?
The roots of $z^{2}+z+1=0$ are $z=-1 / 2 \pm i \sqrt{3} / 2$, so use partial fractions to get

$$
\frac{1}{z^{2}+z+1}=\frac{\frac{1}{i \sqrt{3}}}{z+\frac{1}{2}-i \frac{\sqrt{3}}{2}}-\frac{\frac{1}{i \sqrt{3}}}{z+\frac{1}{2}+i \frac{\sqrt{3}}{2}} .
$$

So if the curve doesn't enclose either singularity (or in fact if it encloses both of them) then the integral is 0 (e.g., $|z-20|=1$ or $|z|=10$).
If the curve encloses $-1 / 2+i \sqrt{3} / 2$ (but not $-1 / 2-i \sqrt{3} / 2$) then the value of the integral is $2 \pi i(1 /(i \sqrt{3}))=2 \pi / \sqrt{3}$. For instance $|z+1 / 2-i \sqrt{3} / 2|=\sqrt{3} / 2$.
8. Calculate

$$
\int_{-\infty}^{\infty} \frac{\cos x}{x^{2}+1} d x
$$

by applying the Cauchy Integral Formula to

$$
\int_{\gamma} \frac{e^{i z}}{(z+i)(z-i)} d z
$$

where γ is the "standard" semicircular contour of radius R and letting R go to infinity. Be sure to estimate what happens on the circle part carefully.
You can use $f(z)=e^{i z} /(z+i)$ around the standard contour, and get that the integral of $e^{i z} /\left(z^{2}+1\right)$ equals $2 \pi i f(i)=\pi / e$. If we can show that the integral over the curved part goes to zero, then the improper integral (being the real part of the complex one), is also π / e.
To show the integral over the curved part goes to zero, let $z=R e^{i \theta}$, and after parametrizing and substituting, we get the integral is less than the integral:

$$
\int_{0}^{\pi} \frac{R}{R^{2}-1} d \theta
$$

which certainly goes to zero as $R \rightarrow \infty$.

