Math 410
 Practice Problems for Midterm 2

Dr. DeTurck
November 10, 2009

1. From Taylor's theorem, we know that if $f(z)$ is holomorphic in an open set Ω that contains the point z_{0}, and if $f\left(z_{0}\right)=0$, then we can write $f(z)=\left(z-z_{0}\right)^{n} q(z)$ for some integer $n>0$ and a function $q(z)$ that is holomorphic in an open subset $U \subset \Omega$ that contains z_{0}, and $q\left(z_{0}\right) \neq 0$ (and then we say that f has a zero of order n at z_{0}). Use this to prove the following version of L'Hôpital's rule:
If f and g are holomorphic in a neighborhood of z_{0}, and if $f\left(z_{0}\right)=g\left(z_{0}\right)=0$ and if $g^{\prime}\left(z_{0}\right) \neq 0$, then

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)}=\lim _{z \rightarrow z_{0}} \frac{f^{\prime}(z)}{g^{\prime}(z)}
$$

2. Calculate $\int_{|z|=1} \frac{\sin z}{z^{4}} d z$. (Hint: Use the series for the sine function to get the residue).
3. Find the maximum of $\left|e^{z}\right|$ on the disk $|z| \leq 1$ (think first!).
4. Calculate the integral $\int_{0}^{\infty} \frac{1}{x^{3}+1} d x$ using integration over two-thirds of the standard semicircular contour (i.e., instead of coming back to the origin along the negative real axis where there is a pole at $x=-1-$ come back along the line where the argument of z is $2 \pi / 3$).
5. (For Stefan) Calculate $\int_{0}^{\pi} \sin ^{2 n} \theta d \theta$. (At some point you will need the binomial theorem.)
6. Suppose f is an entire function and $|f(z)| \leq 10 \sqrt{|z|}$ for all z such that $|z|>1$. Must f be constant? Prove it or explain why not.
7. Show that if f is a meromorphic function that has no poles at integers, and $\lim _{|z| \rightarrow \infty}|z f(z)|=0$, then

$$
\sum_{n=-\infty}^{\infty}(-1)^{n} f(n)=-\sum R_{z_{k}}
$$

where z_{k} are the poles of f and R_{k} is the residue of the function $\pi f(z) / \sin \pi z$ at z_{k}.
Use this result to show that

$$
\sum_{n=\infty}^{\infty} \frac{(-1)^{n}}{n^{2}+a^{2}}=\frac{\pi}{a \sinh \pi a}
$$

