Math 410
 Hints and Answers to Practice Problems for Midterm 2

Dr. DeTurck
November 10, 2009

1. From Taylor's theorem, we know that if $f(z)$ is holomorphic in an open set Ω that contains the point z_{0}, and if $f\left(z_{0}\right)=0$, then we can write $f(z)=\left(z-z_{0}\right)^{n} q(z)$ for some integer $n>0$ and a function $q(z)$ that is holomorphic in an open subset $U \subset \Omega$ that contains z_{0}, and $q\left(z_{0}\right) \neq 0$ (and then we say that f has a zero of order n at z_{0}). Use this to prove the following version of L'Hôpital's rule:
If f and g are holomorphic in a neighborhood of z_{0}, and if $f\left(z_{0}\right)=g\left(z_{0}\right)=0$ and if $g^{\prime}\left(z_{0}\right) \neq 0$, then

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)}=\lim _{z \rightarrow z_{0}} \frac{f^{\prime}(z)}{g^{\prime}(z)}
$$

Since $g^{\prime}\left(z_{0}\right) \neq 0$, we can write $g(z)=\left(z-z_{0}\right) r(z)$ where $f\left(z_{0}\right) \neq 0$. Thus:

$$
\frac{f(z)}{g(z)}=\frac{\left(z-z_{0}\right)^{n} q(z)}{\left(z-z_{0}\right) r(z)}=\frac{\left(z-z_{0}\right)^{n-1} q(z)}{r(z)}
$$

so if $n>1$ then the limit is zero and if $n=1$ then the limit is $q\left(z_{0}\right) / r\left(z_{0}\right)$.
Likewise

$$
\frac{f^{\prime}(z)}{g^{\prime}(z)}=\frac{n\left(z-z_{0}\right)^{n-1} q(z)-\left(z-z_{0}\right) q^{\prime}(z)}{r(z)+\left(z-z_{0}\right) r^{\prime}(z)}
$$

and again if $n>1$ the limit is zero and if $n=1$ then the limit is $q\left(z_{0}\right) / r\left(z_{0}\right)$, which proves the result.
2. Calculate $\int_{|z|=1} \frac{\sin z}{z^{4}} d z$. (Hint: Use the series for the sine function to get the residue).

Use the residue theorem, the only singularity is at $z=0$. To calculate the residue there, recall that

$$
\sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\cdots
$$

so that

$$
\frac{\sin z}{z^{4}}=\frac{1}{z^{3}}-\frac{1}{3!z}+\frac{z}{5!}-\cdots
$$

From this we see that the residue of $\sin z / z^{4}$ is $-1 / 6$. Therefore the value of the integral is $-2 \pi i / 6=-\pi i / 3$.
3. Find the maximum of $\left|e^{z}\right|$ on the disk $|z| \leq 1$ (think first!).

From the maximum principle, we know that the maximum occurs on the boundary of the disk, where $|z|=1$. There, $z=\cos t+i \sin t$, and so

$$
\left|e^{z}\right|=\left|e^{\cos t+i \sin t}\right|=\left|e^{\cos t}\right|
$$

Thus, the maximum is e (since the max of $\cos t$ is 1).
4. Calculate the integral $\int_{0}^{\infty} \frac{1}{x^{3}+1} d x$ using integration over two-thirds of the standard semicircular contour (i.e., instead of coming back to the origin along the negative real axis where there is a pole at $x=-1-$ come back along the line where the argument of z is $2 \pi / 3)$.

The poles of $1 /\left(z^{3}+1\right)$ are at $e^{i \pi / 3},-1$ and $e^{i 5 \pi / 3}$, so the only pole inside the contour is $\alpha=e^{i \pi / 3}$ and it's a simple pole. The residue at this pole is

$$
\lim _{z \rightarrow \alpha} \frac{z-\alpha}{z^{3}+1}=\lim _{z \rightarrow \alpha} \frac{1}{3 z^{2}}=\frac{1}{3 \alpha^{2}}=\frac{1}{3 e^{2 \pi i / 3}}
$$

using L'Hôpital's rule.
The integral over the circular part of the contour is seen to go to zero, since along it, $z=R e^{i t}$, and so it is estimated by

$$
\left|\int_{0}^{2 \pi / 3} \frac{i R e^{i t} d t}{R^{3} e^{3 i t}+1}\right| \leq \frac{(2 \pi / 3) R^{2}}{R^{3}-1}
$$

the limit of which is zero as $R \rightarrow \infty$.
Finally, along the return line, $z=r e^{2 \pi i / 3}, d z=e^{2 \pi i / 3} d r$, and $z^{3}=r^{3}\left(\right.$ since $e^{2 \pi i}=1$. Thus, this part of the integral is

$$
\int_{\infty}^{0} \frac{e^{2 \pi i / 3} d r}{r^{3}+1}=-e^{2 \pi i / 3} \int_{0}^{\infty} \frac{d r}{1+r^{3}}
$$

Therefore,

$$
\frac{2 \pi i}{3 e^{2 \pi i / 3}}=\left(1-e^{2 \pi i / 3}\right) \int_{0}^{\infty} \frac{d x}{x^{3}+1}
$$

and so

$$
\int_{0}^{\infty} \frac{d x}{x^{3}+1}=\frac{2 \pi i}{3\left(1-e^{2 \pi i / 3}\right) e^{2 \pi i / 3}}=\frac{2 \pi i}{3\left(e^{2 \pi i / 3}-e^{4 \pi i / 3}\right)}=\frac{2 \pi i}{3 \sqrt{3} i}=\frac{2 \pi}{3 \sqrt{3}}
$$

5. (For Stefan) Calculate $\int_{0}^{\pi} \sin ^{2 n} \theta d \theta$. (At some point you will need the binomial theorem.)

Let $z=e^{i \theta}$, so $d \theta=d z /(i z)$, and

$$
\sin \theta=\frac{1}{2 i}\left(e^{i \theta}-e-i \theta\right)=\frac{1}{2 i}\left(z-\frac{1}{z}\right) .
$$

Thus

$$
\int_{0}^{\pi} \sin ^{2 n} \theta d \theta=\frac{1}{2} \int_{0}^{2 \pi} \sin ^{2 n} \theta d \theta=\int_{|z|=1}\left(\frac{1}{2 i}\left(z-\frac{1}{z}\right)\right)^{2 n} \frac{d z}{i z}
$$

The integrand has a pole at $z=0$. To calculate its residue there, we expand the integrand in powers of z, and the residue is the coefficient of $1 / z$: The integrand is:

$$
\frac{1}{(2 i)^{2 n} i z} \sum_{k=0}^{2 n}(-1)^{k} C_{k}^{2 n} \frac{z^{k}}{z^{2 n-k}},
$$

where $C_{k}^{2 n}$ is the binomial coefficient

$$
C_{k}^{2 n}=\frac{(2 n)!}{k!(2 n-k)!} .
$$

Because of the z in the denominator in front of the sum, we need the constant term (where $k=2 n-k$, or $k=n$) in the sum. Therefore, the residue is

$$
\frac{1}{(2 i)^{2 n} i}(-1)^{n} C_{n}^{2 n}=\frac{C_{n}^{2 n}}{2^{2 n} i}
$$

We have to multiply this by πi (not $2 \pi i$, because of the $1 / 2$), and so the answer is

$$
\frac{\pi C_{n}^{2 n}}{2^{2 n}}
$$

6. Suppose f is an entire function and $|f(z)| \leq 10 \sqrt{|z|}$ for all z such that $|z|>1$. Must f be constant? Prove it or explain why not.

The function must be constant. For any z_{0}, use Cauchy's integral formula around a large circle about z_{0} to write

$$
\left|f^{\prime}\left(z_{0}\right)\right|=\left|\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=R} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z\right|
$$

And we can estimate this by $1 / \sqrt{R}$, by hypothesis, so $f^{\prime}\left(z_{0}\right)=0$. Since z_{0} was aribtrary, f is constant.
7. Show that if f is a meromorphic function that has no poles at integers, and $\lim _{|z| \rightarrow \infty}|z f(z)|=0$, then

$$
\sum_{n=-\infty}^{\infty}(-1)^{n} f(n)=-\sum R_{z_{k}}
$$

where z_{k} are the poles of f and R_{k} is the residue of the function $\pi f(z) / \sin \pi z$ at z_{k}. Use this result to show that

$$
\sum_{n=\infty}^{\infty} \frac{(-1)^{n}}{n^{2}+a^{2}}=\frac{\pi}{a \sinh \pi a}
$$

Done in class; maybe later.

