Math 410 Hints and Answers to Practice Problems for Midterm 2

Dr. DeTurck November 10, 2009

1. From Taylor's theorem, we know that if f(z) is holomorphic in an open set Ω that contains the point z_0 , and if $f(z_0) = 0$, then we can write $f(z) = (z - z_0)^n q(z)$ for some integer n > 0 and a function q(z) that is holomorphic in an open subset $U \subset \Omega$ that contains z_0 , and $q(z_0) \neq 0$ (and then we say that f has a zero of order n at z_0). Use this to prove the following version of L'Hôpital's rule:

If f and g are holomorphic in a neighborhood of z_0 , and if $f(z_0) = g(z_0) = 0$ and if $g'(z_0) \neq 0$, then

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \lim_{z \to z_0} \frac{f'(z)}{g'(z)}.$$

Since $g'(z_0) \neq 0$, we can write $g(z) = (z - z_0)r(z)$ where $f(z_0) \neq 0$. Thus:

$$\frac{f(z)}{g(z)} = \frac{(z-z_0)^n q(z)}{(z-z_0)r(z)} = \frac{(z-z_0)^{n-1}q(z)}{r(z)}$$

so if n > 1 then the limit is zero and if n = 1 then the limit is $q(z_0)/r(z_0)$. Likewise

$$\frac{f'(z)}{g'(z)} = \frac{n(z-z_0)^{n-1}q(z) - (z-z_0)q'(z)}{r(z) + (z-z_0)r'(z)},$$

and again if n > 1 the limit is zero and if n = 1 then the limit is $q(z_0)/r(z_0)$, which proves the result.

2. Calculate $\int_{|z|=1} \frac{\sin z}{z^4} dz$. (Hint: Use the series for the sine function to get the residue).

Use the residue theorem, the only singularity is at z = 0. To calculate the residue there, recall that

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \cdots$$

so that

$$\frac{\sin z}{z^4} = \frac{1}{z^3} - \frac{1}{3!z} + \frac{z}{5!} - \cdots$$

From this we see that the residue of $\sin z/z^4$ is -1/6. Therefore the value of the integral is $-2\pi i/6 = -\pi i/3$.

3. Find the maximum of $|e^z|$ on the disk $|z| \leq 1$ (think first!).

From the maximum principle, we know that the maximum occurs on the boundary of the disk, where |z| = 1. There, $z = \cos t + i \sin t$, and so

$$|e^{z}| = |e^{\cos t + i \sin t}| = |e^{\cos t}|.$$

Thus, the maximum is e (since the max of $\cos t$ is 1).

4. Calculate the integral $\int_0^\infty \frac{1}{x^3+1} dx$ using integration over two-thirds of the standard semicircular contour (i.e., instead of coming back to the origin along the negative real axis – where there is a pole at x = -1 – come back along the line where the argument of z is $2\pi/3$).

The poles of $1/(z^3 + 1)$ are at $e^{i\pi/3}$, -1 and $e^{i5\pi/3}$, so the only pole inside the contour is $\alpha = e^{i\pi/3}$ and it's a simple pole. The residue at this pole is

$$\lim_{z \to \alpha} \frac{z - \alpha}{z^3 + 1} = \lim_{z \to \alpha} \frac{1}{3z^2} = \frac{1}{3\alpha^2} = \frac{1}{3e^{2\pi i/3}}$$

using L'Hôpital's rule.

The integral over the circular part of the contour is seen to go to zero, since along it, $z = Re^{it}$, and so it is estimated by

$$\left| \int_0^{2\pi/3} \frac{iRe^{it}dt}{R^3 e^{3it} + 1} \right| \le \frac{(2\pi/3)R^2}{R^3 - 1}$$

the limit of which is zero as $R \to \infty$.

Finally, along the return line, $z = re^{2\pi i/3}$, $dz = e^{2\pi i/3}dr$, and $z^3 = r^3$ (since $e^{2\pi i} = 1$. Thus, this part of the integral is

$$\int_{\infty}^{0} \frac{e^{2\pi i/3} dr}{r^3 + 1} = -e^{2\pi i/3} \int_{0}^{\infty} \frac{dr}{1 + r^3}.$$

Therefore,

$$\frac{2\pi i}{3e^{2\pi i/3}} = (1 - e^{2\pi i/3}) \int_0^\infty \frac{dx}{x^3 + 1},$$

and so

$$\int_0^\infty \frac{dx}{x^3 + 1} = \frac{2\pi i}{3(1 - e^{2\pi i/3})e^{2\pi i/3}} = \frac{2\pi i}{3(e^{2\pi i/3} - e^{4\pi i/3})} = \frac{2\pi i}{3\sqrt{3}i} = \frac{2\pi}{3\sqrt{3}}.$$

5. (For Stefan) Calculate $\int_0^{\pi} \sin^{2n} \theta \, d\theta$. (At some point you will need the binomial theorem.)

Let $z = e^{i\theta}$, so $d\theta = dz/(iz)$, and

$$\sin \theta = \frac{1}{2i} (e^{i\theta} - e - i\theta) = \frac{1}{2i} \left(z - \frac{1}{z} \right).$$

Thus

$$\int_0^\pi \sin^{2n}\theta \, d\theta = \frac{1}{2} \int_0^{2\pi} \sin^{2n}\theta \, d\theta = \int_{|z|=1} \left(\frac{1}{2i}\left(z - \frac{1}{z}\right)\right)^{2n} \frac{dz}{iz}.$$

The integrand has a pole at z = 0. To calculate its residue there, we expand the integrand in powers of z, and the residue is the coefficient of 1/z: The integrand is:

$$\frac{1}{(2i)^{2n}iz}\sum_{k=0}^{2n}(-1)^k C_k^{2n}\frac{z^k}{z^{2n-k}}$$

where C_k^{2n} is the binomial coefficient

$$C_k^{2n} = \frac{(2n)!}{k!(2n-k)!}.$$

Because of the z in the denominator in front of the sum, we need the constant term (where k = 2n - k, or k = n) in the sum. Therefore, the residue is

$$\frac{1}{(2i)^{2n}i}(-1)^n C_n^{2n} = \frac{C_n^{2n}}{2^{2n}i}.$$

We have to multiply this by πi (not $2\pi i$, because of the 1/2), and so the answer is

$$\frac{\pi C_n^{2n}}{2^{2n}}$$

6. Suppose f is an entire function and $|f(z)| \le 10\sqrt{|z|}$ for all z such that |z| > 1. Must f be constant? Prove it or explain why not.

The function must be constant. For any z_0 , use Cauchy's integral formula around a large circle about z_0 to write

$$|f'(z_0)| = \left| \frac{1}{2\pi i} \int_{|z-z_0|=R} \frac{f(z)}{(z-z_0)^2} \, dz \right|.$$

And we can estimate this by $1/\sqrt{R}$, by hypothesis, so $f'(z_0) = 0$. Since z_0 was arithrary, f is constant.

7. Show that if f is a meromorphic function that has no poles at integers, and $\lim_{|z|\to\infty} |zf(z)| = 0$, then

$$\sum_{n=-\infty}^{\infty} (-1)^n f(n) = -\sum R_{z_k},$$

where z_k are the poles of f and R_k is the residue of the function $\pi f(z)/\sin \pi z$ at z_k . Use this result to show that

$$\sum_{n=\infty}^{\infty} \frac{(-1)^n}{n^2 + a^2} = \frac{\pi}{a \sinh \pi a}.$$

Done in class; maybe later.