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Isoperimetric problems for the helicity of vector fields
and the Biot—Savart and curl operators
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The helicity of a smooth vector field defined on a domain in three-space is the
standard measure of the extent to which the field lines wrap and coil around one
another. It plays important roles in fluid mechanics, magnetohydrodynamics, and
plasma physics. The isoperimetric problem in this setting is to maximize helicity
among all divergence-free vector fields of given energy, defined on and tangent to
the boundary of all domains of given volume in three-space. The Biot—Savart
operator starts with a divergence-free vector field defined on and tangent to the
boundary of a domain in three-space, regards it as a distribution of electric current,
and computes its magnetic field. Restricting the magnetic field to the given domain,
we modify it by subtracting a gradient vector field so as to keep it divergence-free
while making it tangent to the boundary of the domain. The resulting operator,
when extended to the L2 completion of this family of vector fields, is compact and
self-adjoint, and thus has a largest eigenvalue, whose corresponding eigenfields are
smooth by elliptic regularity. The isoperimetric problem for this modified Biot—
Savart operator is to maximize its largest eigenvalue among all domains of given
volume in three-space. The curl operator, when restricted to the image of the
modified Biot—Savart operator, is its inverse, and the isoperimetric problem for this
restriction of the curl is to minimize its smallest positive eigenvalue among all
domains of given volume in three-space. These three isoperimetric problems are
equivalent to one another. In this paper, we will derive the first variation formulas
appropriate to these problems, and use them to constrain the nature of any possible
solution. For example, suppose that the vector field V, defined on the compact,
smoothly bounded domain (), maximizes helicity among all divergence-free vector
fields of given nonzero energy, defined on and tangent to the boundary of all such
domains of given volume. We will show that (1) |V| is a nonzero constant on the
boundary of each component of (); (2) all the components of 3 are tori; and (3)
the orbits of V are geodesics on ). Thus, among smooth simply connected do-
mains, none are optimal in the above sense. In principal, one could have a smooth
optimal domain in the shape, say, of a solid torus. However, we believe that there
are no smooth optimal domains at all, regardiess of topological type, and that the
true optimizer looks like the singular domain presented in this paper, which we can
think of either as an extreme apple, in which the north and south poles have been
pressed together, or as an extreme solid torus, in which the hole has been shrunk to
a point. A computational search for this singular optimal domain and the helicity-
maximizing vector field on it is at present under way, guided by the first variation
formulas in this paper. © 2000 American Institute of Physics.
[S0022-2488(00)00705-2]
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I. INTRODUCTION

Let () be a compact domain in three-space with smooth boundary 4€}; ‘‘smooth’’ for us
always means of class C*. We allow both () and 4 to be disconnected.

Let VF({}) be the set of all smooth vector fields V on ). Then VF(Q) is an infinite-
dimensional vector space, on which we use the L? inner product (V, W)= [oV-Wd(vol).

The helicity H(V) of the vector field V on (), defined by the formula

HO=(Wam) | V) x Vi) (e=y)le=yPdtvold(vol,),

was introduced by Woltjer' in 1958 and named by Moffatt? in 1969. The formula itself is a

variation on Gauss’ integral formula® for the linking number of two closed space curves, which
dates back to 1833.

To help understand the formula for helicity, think of V as a distribution of electric current, and
use the Biot—Savart law to compute its magnetic field, BS(V):

BS(V)(y)=(1/4m) fQV(x) X (y=x)/|y—x|*d(vol,).

Although the magnetic field BS(V) is well defined throughout all of three-space, we will restrict
it to the domain () and thus view the Biot—Savart law as providing an operator

BS: VF(Q)— VE(Q).

The relation between helicity and the Biot—Savart operator is as follows:

H(V)=(1/47T)J-QXQV(x)XV(y)-(x—-y)/|x—y|3d(volx)d(voly)
=J V(y)-[(1/41'r)f V(x) X (y—x)/|y —x|3d(vol,) d(vol,)
0 Q
=J.QV()’)'B_S(V)(}’)d(V01y)

= fn V-BS(V)d(vol),

so the helicity of V is just the L? inner product of V and BS(V),
H(V)=(V, BS(V)).

In this paper, we will mainly be interested in divergence-free vector fields which are defined
on and tangent to the boundary of the domain (). They form a subspace K(Q) of VF(Q),

K(Q)={VeVFQ): V-Vv=0, V-n=0},

where n is the unit outward normal vector field to ). These vector fields are often regarded as the
fluid analogs of knots and links.

Recall the modification of the Biot—Savart operator described in the abstract on the first page.
We start with a divergence-free vector field V, defined on and tangent to the boundary of (), thus
an element of K({2). We compute its magnetic field BS(V) and restrict it to . Then we subtract
an appropriate gradient vector field from BS(V) so that the resulting vector field lies in K(Q)); see
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Sec. ITA for the Hodge Decomposition theorem. To say it another way, we take the L? orthogonal
projection of BS(V) back into K(Q2). In this way we define the modified Biot—Savart operator

BS’: K(Q2)—K(Q).
Just as the Biot—Savart operator BS is related to helicity by the formula
H(V)=(V, BS(V))
for any V e VF({1), so the modified Biot—Savart operator BS' is related to helicity by the formula
H(V)=(V, BS'(V))

for any V e K({2). The second formula follows from the first, since BS' (V) differs from BS(V) by
a gradient vector field, which is L? orthogonal to V if V e K({)).

Since we are focusing on divergence-free vector fields which are tangent to the boundary of
their domain of definition, it is this second formula for helicity which plays a central role in the
present paper.

The modified Biot-Savart operator BS’, when extended to the L? completion of its domain
K({2), is a compact, self-adjoint operator. Applying the spectral theorem and elliptic regularity, we
will see that the vector fields V in K(Q2) with maximum helicity for given energy are precisely the

eigenfields of BS’ corresponding to its largest eigenvalue \(2), and that for these vector fields we
have

H(V)=\(Q) E(V),
where E(V)=(V,V) is the energy of V. Then for all V in K({)) we have
H(V)=s\(Q) E(V).

This approach to helicity was pioneered by Arnold* in his 1974 study of the asymptotic Hopf
invariant for vector fields on closed orientable three-manifolds.

Searching for the largest eigenvalue of BS’ on VF({}) might seem to favor vector fields of
positive helicity. However, if we reflect the domain through the origin in three-space to obtain
the domain (), and carry along the vector field V on  to a vector field V™ on Q~, then
helicities change sign because the reflection is orientation reversing. That is, H(V™)=—H(V).
Thus the vector fields of negative helicity on € reflect through the origin to vector fields of

positive helicity on ()™, where they get their deserved attention. In particular, for any vector field
V on (), we have

|H(V)|<max {MQ),\M(Q7)} E(V).

Suppose the domain () is subject to a smooth volume-preserving deformation &,:Q—Q,,
with h, the identity, whose initial velocity is the vector field W defined by W(x)
=d/dt|,-oh,(x). By “‘volume-preserving,”’ we always mean that the volume form is preserved at
each point; thus V-W=0. We would like to have a first variation formula for the largest eigen-
value A({)) of the modified Biot—Savart operator BS’: K(Q)— K().

However, as we know from elementary linear algebra, the largest eigenvalue of a smooth
one-parameter family of self-adjoint matrices does not always vary smoothly.

We finesse this annoyance as follows. Given a divergence-free vector field V defined on and
tangent to the boundary of (), consider the Rayleigh quotient

AV)=(BS"(V),VW(V,V\=H(V)/E(V).
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If V happens to be an eigenfield of the modified Biot—Savart operator BS’, then A(V) will be the

corresponding eigenvalue. The largest eigenvalue \(Q) of BS’ is the maximum of all the Rayleigh
quotients A (V).

Now, given the smooth volume-preserving deformation + of ) defined above, let Vi=(h,), vV
be the push-forward of V to a vector field on the domain () +- One says that V, is Jrozen into the

domain (), as it deforms. The quantity A(V,) does vary smoothly, so we define the first variation
OA(V) of A(V) to be

SN(V)=d/dt|,_\(V,)

and seek a formula for SN(V).

Since N(V)=H(V)/E( V), it'is natural to seek first variation formulas for the helicity H(v)
and the energy E(V).

In the following theorems, keep in mind that the vector field V is divergence-free and tangent
to the boundary of the domain (), and remains frozen in as () is subject to a volume-preserving
deformation with initial velocity field W.

Theorem A: The helicity H(V,) is independent of .
This theorem is inspired by Arnold,* who showed that for certain divergence-free vector fields
V on a compact orientable three-manifold without boundary, the helicity H(V) remains constant

when V is carried along by any volume-preserving, orientation-preserving diffeomorphism. We
discuss this at the beginning of Sec. III.

Theorem B: The ﬁ_rst variation of energy is given by the formula
SE(V)=2(VX(VX V), W)—f |V|2(W'n)d(a.rea).
a0

If the domain Q is again replaced by a compact orientable three-dimensional manifold without
boundary, then the second term on the right disappears, and Theorem B reduces to another result

Theorem C: The Jfirst variation of the Rayleigh quotient \(V)=H (VIE(V) is given by the
SJormula

~2VX(VXV), W)+ 30 [VIA(W-n) d(area)
SN(V)=\(V) T TV dtooD :

If V is an eigenfield of the modified Biot-Savart operator BS’, then

Jaq |VI*(W-n) d(area)

MV =N = o ateeD

If this eigenfield v corresponds to the largest eigenvalue AMQ) of BS' on Q, then

Jaa |VI*(W-n) d(area)
Ja |V|*d(vol)

A(Q)=\(Q)

The inequality appears only in the case that the largest eigenvalue has multiplicity >1. This
can certainly happen: when € is a round ball the largest eigenvalue has multiplicity 3. When this
eigenvalue is simple, the inequality can be replaced by an equality.

The third part of Theorem C plays a key role in proving the next theorem.

Theorem D: Suppose the vector field V, defined on the compact, smoothly bounded domain
Q, maximizes helicity among all divergence-free vector fields of given nonzero energy, defined on
and tangent to the boundary of all such domains of given volume in three-space.
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Then

(1) |V| is a nonzero constant on the boundary of each component of ().
(2) All the components of Q) are tori.

(3) The orbits of V are geodesics on ).

We already mentioned some of the consequences of this result in the abstract.

After proving Theorem A, we will modify its proof to derive a general first variation formula
for helicity,

SH(V)=2 jﬂ(BS(V)-V)(V-W) d(vol),

in which the vector field V is, as usual, divergence-free and tangent to the boundary of its domain
Q, but in which the deformation , is not required to be volume preserving, and hence in which its
initial velocity field W is arbitrary. But we will not use this formula in the paper.

After proving Theorem C, we will describe an alternative first variation formula for the
eigenvalues of the modified Biot—Savart operator BS’ which appears as an equality rather than an
inequality.

For further information about helicity, its mathematical foundations, and the role it plays in

fluid mechanics and plasma physics, we refer the reader to the papers of Berger and Field,’
Moffatt and Ricca,%” and to our papers.®'4

Il. BACKGROUND
A. The Hodge decomposition theorem

Let ) be a compact domain with smooth boundary in three-space.

The following theorem is arguably the single most useful expression of the interplay between
the topology of the domain (2, the traditional calculus of vector fields defined on this domain, and
the L? inner product structure on VF({)). We will use this result a number of times in the sections
to come.

The reader can find a detailed treatment and proof of this theorem in Ref. 9, along with a
number of applications to boundary value problems for vector fields.

Hodge decomposition theorem: We have a direct sum decomposition of VF(L)) into five
mutually orthogonal subspaces,

VF(Q)=FK@®HK ®CGeHGaGG,

with
ker curl= HK & CG®HGaGG,
image grad= CGeHGaGG,
image curl=FK® HK & CG,
ker div=FK®HK ®CG®HG,
where

FK = Fluxless knots={V-V=0,V-n=0,all interior fluxes=0},

HK = Harmonic knots={V-V=0VXV=0V-n=0},

CG=Curly gradients={V=V ¢ ,V-V=0. all boundary fluxes=0},
HG=Harmonic gradients={V=Y ¢ ,V-V=0, ¢ locally constant on ()},
GG=Grounded gradients={V =Y ¢.¢|d0}=0},

and furthermore,
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HK=H,(Q;R)=H,(,9Q:R)=RE™s of /¢
HGEHo(Q;R)EHI(Q,ﬁ\Q,;R)ER(# components of #€))—(# components of (2)‘

We need to explain the meanings of the conditions which appear in the statement of this
theorem.

The outward pointing unit vector field orthogonal to Jf) is denoted by n, so the condition
V-n=0 indicates that the vector field V is tangent to the boundary of ().

Let 2 stand generically for any smooth surface in ) with 42 C Q. Orient X by picking one
of its two unit normal vector fields n. Then, for any vector field V on (), we can define the flux of
V through X to be the value of the integral ® =[5 V+n d(area).

‘Assume that V is divergence-free and tangent to ). Then the value of this flux depends only
on the homology class of 3 in the relative homology group H,({2,3();Z). For example, if () is an
n-holed solid torus, then there are disjoint oriented cross-sectional disks % ,...,3, , positioned so
that cutting ) along these disks will produce a simply-connected region. The fluxes ®,,...,®, of
V through these disks determine the flux of V through any other cross-sectional surface.

If the flux of V through every smooth surface ¥ in () with 9% C Q) vanishes, we’ll say
“all interior fluxes=0."’ Then

FK={Ve VF(Q): V-V=0, V-n=0, all interior fluxes=0}

will be the subspace of fluxless knots.
The subspace

HK={Ve VF(Q): V-V=0, VXV=0, V-n=0}

of harmonic knots is isomorphic to the absolute homology group H,({);R) and also, via Poincaré

duality, to the relative homology group H,(Q,8Q;R), and is thus a finite-dimensional vector
space, with dimension equal to the genus of ).
The orthogonal direct sum of these two subspaces,

K(Q)=FKoHK,

is the subspace of VF({2) mentioned earlier, consisting of all divergence-free vector fields defined
on {) and tangent to its boundary.

If V is a vector field defined on (), we will say that all boundary fluxes of V are zero if the flux
of V through each component of ) is zero. Then

CG={VeVF(Q): V=V¢, V:V=0, all boundary fluxes=0}
will be called the subspace of curly gradients because these are the only gradients which lie in the

image of curl. ‘
We define the subspace of harmonic gradients,

HG={VeVF(Q): V=V¢, V-V=0, ¢ locally constant on dQ},
meaning that ¢ is constant on each component of (). This subspace is isomorphic to the absolute
homology group H,(£2;R) and also, via Poincaré duality, to the relative homology group
H\(Q,3€;R), and is hence a finite-dimensional vector space, with dimension equal to the number

of components of 5} minus the number of components of (.
The definition of the subspace of grounded gradients,

GG={Ve VF(Q):V=Vg, ¢|;n=0},

is self-explanatory.
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B. A rough upper bound on helicity

The following result, extracted from Ref. 8, provides a bound on the helicity of any vector
field V; this bound depends only on the energy of V and the volume of (.

Theorem E: Let V be a smooth vector field in three-space, defined on the compact domain Q)
with smooth boundary. Then the helicity H(V) of V is bounded by

|H(V)|<R(Q) E(V),

where R(Q) is the radius of a round ball having the same volume as QO and E(V)
=[qV-Vd(vol) is the energy of V.
This upper bound is not sharp, but it is of the right order of magnitude: for example, the

Woltjer spheromak field V on the round ball  (shown in Fig. 2) has helicity greater than one-fifth
of the asserted upper bound.

Sharp upper bounds obtained by spectral methods will be discussed in the following sections.
C. Properties of the Biot—Savart operators

It is useful to have a clear picture of the image of the modified Biot—Savart operator. We will
say that a vector field V e K(Q) satisfies Ampere’s law if

f Veds=0
C

for all closed curves C on #Q which bound in R3— Q.
We refer the reader to Ref. 10 for proofs of the following three theorems.

Theorem F: The image of the modified Biot—Savart operator consists of those vector fields
V e K(Q) which satisfy Ampere’s law.

Theorem G: The ordinary and modified Biot-Savart operators BS and BS' are bounded
operators, and hence they extend to bounded operators on the L* completions of their domains;
there they are both compact and self-adjoint.

Theorem H: The equation VXBS(V)=V holds in Q if and only if Ve K(Q), that is, if and
only if V is divergence-free and tangent to the boundary of ().

D. Connection with the curl operator

If the vector field V is divergence-free and tangent to the boundary of its domain (), then, by
Theorem H,

VXBS(V)=V.
Since BS(V) and BS'(V) differ by a gradient vector field, we also have
VXBS'(V)=V.
If V is an eigenfield of BS’,
BS'(V)=\V,
then
VXV=(I)V.

Thus the eigenvalue problem for BS' can be converted to an eigenvalue problem for curl on
the image of BS’, which means to a system of partial differential equations. Even though we
extended BS’ to the L completion of K({2) in order to apply the spectral theorem, the eigenfields
are smooth vector fields in K(£2): this follows. thanks to elliptic regularity, because on divergence-
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FIG. 1. The Lundquist tokamak field.

free vector fields, the square of the curl is the negative of the Laplacian. Hence these eigenfields
can be (and are) discovered by solving this system of partial differential equations (PDEs).

E. Explicit computation of helicity-maximizing vector fields

We solve VX V=(1/\)V on the flat solid torus D*(a) X S', where D?(a) is a disk of radius
a and S! is a circle of any length. Although this is not a subdomain of three-space, the solution
here is so clear cut and instructive as to be irresistable; see Ref. 12.

The largest eigenvalue of BS’ on this domain is

A(D%*(a)x S")=a/2.405...,

where the denominator is the first positive zero of the Bessel function Jo. The corresponding
eigenfield, discovered by Lundquist’® in 1951 in his study of force-free magnetic fields on a
cylinder, and known in plasma physics as a tokamak field (see Fig. 1), is

V=J1(r/)\)¢+.]0(r/}\)2,

expressed in terms of cylindrical coordinates (r, @, z) and the Bessel functions Joand J;. |
It follows that if V is any vector field in K(D?(a)XS"), then

H(V)=(a/l2.405..)E(V),
with equality for the above eigenfield V.

We solve VX V=(1/A)V on the round ball B3(a) of radius a in terms of spherical Bessel
functions in Ref. 13.

The largest eigenvalue of BS’ on this domain is
N(B*(a))=al4.4934...:
the denominator is the first positive zero of
(sinx)/x—cos x.
The corresponding eigenfield is Woltjer’s model for the magnetic field in the Crab Nebula,'® also

known in plasma physics as a spheromak field (see Fig. 2), and is described below in spherical
coordinates (r, 6, ¢) on a ball of radius a=1:

V(r, 0,0)=u(r,0)i+uv(r, 0)9+w(r,0)¢,

where
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FIG. 2. The Woltjer spheromak field.

u(r,8)=(2N\/r?)((sin r/\)/(r/\)—cos r/\)cos 6,
v(r,0)=(—1/r)((cos r/\)/(r/\)— (sin r/\)/(r/\)*+sin r/\)sin 6,
w(r,8)=(1/r)((sinr/\)/(r/\)— cos r/\)sin 6.

Note that the value A = 1/4.4934... makes both u(r,8) and w(r, ) vanish when r=1, that is,
at the boundary of the ball. As a consequence, the vector field V is tangent to the boundary of the
ball, and directed there along the meridians of longitude.

It follows that if V is any vector field in K(B3(a)), then

H(V)<(al4.4934..)E(V),

with equality for the above eigenfield V.
Compare this with the earlier rough upper bound,

|H(V)|<aE(V),

promised by Theorem E.

Comparison of the two pictures above shows how the fundamental features of the helicity-
maximizer persist even as the domain changes topological type.

lll. THE ISOPERIMETRIC PROBLEM
A. Invariance of helicity

Amold* showed in 1974 that the helicity (he called it the mean Hopf invariant) of a vector
field V on a closed orientable three-manifold can be defined using just a volume element (rather
than a Riemannian metric), provided the vector field is ‘‘homologous to zero.”” To see what he
meant by this, convert the vector field V to a two-form wy in the usual way by defining
wy(U,,Uy)=vol(V,U,,U,). If V is divergence-free, then wy is closed. Amold called a
divergence-free vector field V homologous to zero if the corresponding two-form wy is exact. If a
Riemannian metric compatible with the volume form is present, then a vector field is homologous
to zero if and only if it is in the image of curl.

The corresponding results about helicity of vector fields defined on domains in three-space are
as follows.
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FIG. 3. Helicity can change.

(1) Let 2 be a compact simply-connected domain in three-space with smooth boundary, and V,
a divergence-free vector field defined on (), and tangent to its boundary. Let 4:£};— (), be an
orientation-preserving, volume-preserving diffeomorphism, and define V,=#4,(V}). Then the
helicity H(V,)=H(V,).

(2) The same result holds if we drop the hypothesis that ), is simply connected, but add the
hypothesis that the vector field V; is fluxless (as defined in the section on the Hodge decom-
position theorem).

The arguments are straightforward adaptations of those of Arnold; we do not give them here,
nor do we use these two results.

By contrast, if in (1) we drop the hypothesis that ), is simply connected, and do not replace
it with another suitable assumption, then we can have H(V,)# H(V,) (see Fig. 3).

The invariance property of helicity in three-space that we do need is that it remains constant
when the vector field is carried along by a volume-preserving deformation of domain, as asserted
in Theorem A. We turn to this next.

B. Material derivatives and the transport theorem

Our proof of Theorem A will use material derivatives and the transport theorem from fluid
mechanics, so we pause for a brief reminder, referring the reader to Chap. 1 of Ref. 17 for more
details.

Suppose that a fluid is moving through three-space, and that W(x,?) is the velocity of the fluid
particle at location x and time .

Let F(x,t) be some quantity, scalar or vector, defined in the region where the fluid is flowing.

Let DF/Dt denote the rate of change of F as measured by a person moving with the flow.
This quantity is known as the material derivative of F and is given by

DF/Dt=3F/at+ 2, (3F/ax;)(dx;/d1)

=gF/dt+(W-V)F.
Let d(vol) be a small chunk of fluid moving with the flow. Then
(D/Dt)d(vol)=(V-W)d(vol).
Hence

(DIDt)(Fd(vol))=(DF/Dt)d(vol)+ F(D/Dt)d(vol)
=(dF/ot+(W-V)F+F(V-W))d(vol).

Suppose that (), is a region moving with the fluid and always containing the same fluid
particles. Then the transport theorem asserts that
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(d/dt)f F(x,t)d(vol)=f (DIDt)(F(x,t)d(vol))
Q! ﬂt
=f (0F/3t+(W-V)F+ F(V-W))d(vol).
O‘t
If the fluid is incompressible (that is, the flow is volume-preserving), then W is divergence-free
and the last term in the integrand above is zero.
1nd V C. Proof of Theorem A
- be an
\en the Let ) be a compact domain with smooth boundary in three-space, and V a divergence-free
vector field defined on () and tangent to its boundary. _
dd the Let h,:Q1— (), be a smooth family of volume-preserving diffeomorphisms of {) into R?, with
ecom- h, the identity.

Define a vector field W on Q) by W(x)=d/dt|,=oh,(x). This vector field records the initial

velocity of the deformation k,. Since each h » is volume preserving, W is divergence-free.

. here, Let V,=(h,),V, a smooth divergence-free vector field defined on (), and tangent to its
boundary. Thus V, is frozen into Q, as it deforms.

>place Theorem A asserts that the helicity H( V) is independent of ¢.

We will demonstrate this by showing that the derivative (d/dt)H(V,) is zero, and since the
1stant argument will be independent of which instant of time we are at, it will be sufficient to show that
serted '

dldt|,—oH(V,)=0.
We begin by writing
H(V,)=f BS(V,)-V,d(vol),
fluid Q,
more and then differentiate with respect to  at 7=0:
fluid
d/dt|,=0H(V,)=d/dt|,=of BS(V,):V,d(vol),
wing. &
flow.
=f D/Dt|,_o(BS(V,)-V d(vol))
0
= | D100l o®SV)Vara(v,
where the next-to-last equality uses the material derivative D/D? and the transport theorem, as
reviewed in the previous section, while the last equality uses the fact that the diffeomorphisms #,
are volume preserving.

Now

D/Dt|,=0(BS(V,)-V,)=(D/Dt|,=0BS(V,))-V+ BS(V)+«(D/Dt|,~,V,).

From the previous section we have

D/Dt|,~oV,=dldt|,—oV,+ (W-V)V,
fuid D/Dt|,_,BS(V,)=d/dt|,—(BS(V,)+ (W-V)BS(V),
ul

indulging our habit of writing d/dt in place of d/dr.
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We need to learn the values of d/dt|,—,V, and d/dt|,-BS(V,).

We begin by staying put at the fixed location x in the interior of ) and watching the vector
V.(x) change with time:
(d/dt)|t=0vt(x) =lim (1/¢)(V,(x)— V(x))
t—0
=lim (1/£)((h,) V(R 'x) = V(x))
t—0
by
=[V,W](x),
the value at x of the Lie bracket [ V,W] of the vector fields V and W. ,
Remaining at x, we watch the magnetic field BS(V,(x)) change with time. This change is due a
to two influences: for one thing, the vector field V, is changing; for another, the domain €, is
shifting.
The contribution to d/dt|,-¢BS(V,) due to the changing vector field is simply the
BS(d/dt|,—,V,) by the linearity of the operator BS.
The contribution to d/dt|,-,BS(V,) due to the shifting domain is the magnetic field due to a
surface current distribution (W-n)V along the boundary of ). We will record this contribution as
BS((W-n)Vlsq).
Thus
Ar
d/dt|,—oBS(V,)=BS(d/dt|,-oV) +BS(W-n)V|,q) to
=BS([V,W])+BS(W-n)V|sq).
Having learned the values of d/dt|,-,V, and d/dt|,—(BS(V,), we get the following formulas
for the material derivatives of V, and BS(V,):
DIDt|,qV,=[V,W]+(W-V)V,
D/Dt],0BS(V,)=BS([V,W]) + BS(W-n) V| ;0)+ (W-V)BS(V). Ap
We insert this information into our computation of the time rate of change of helicity:
sinc
it =oH(V)= | DIDH,-o®S(V)-V)d(vol)
=fQ(D/Dt|,=0BS(V,)-V+BS(V)~(D/Dt|,=0V,)d(vol) bec:
=((DID1|,=4BS(V,)),V)+(BS(V),(D/Dt|,=,V,))
=(BS([V,W]) +BS((W-n) V]| s0)+ (W-V)BS(V), V) +(BS(V),[V, W]+ (W-V) V)
=(BS([V,W]),V)+(BS(V),[V,W])+(BS(W-n)V|;0),V)+{((W-V)BS(V),V)
+(BS(V),(W-V)V),
where we have reordered the five terms for the convenience of further computation.
To begin, the first two terms are equal, thanks to the self-adjointness of the operator BS, and
we combine them as 2(BS(V),[V,W]).

The last two terms combine to yield

fn W-V(BS(V)-V)d(vol).
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The middle term can be rewritten as
(BS(Won)V1un).V) = | BS(Won)Viun) v (o)
=f (W-n)V-BS(V) d(area),
a0

by using a version of the symmetry of BS appropriate to this situation.
Assembling, we get

dldt|,=oH(V,)=2(BS(V),[V,W])+ fm(W-n)V~BS(V) d(area) + J’QW-V(BS(V)-V) d(vol).

Our job is now to process the three terms on the right-hand side of this equation and show that
they add up to zero.

We begin with the first term.
Recall the formula

VX(AXB)=(B-V)A—(A-V)B+A(V-B)—B(V-A)
=[B,A]+A(V-B)—B(V-A).

Apply this formula with A=W and B=V, keeping in mind that both V and W are divergence-free,
to get

VX(WXV)=[V,W].
Next, recall the formula
V-«(AXB)=B+«(VXA)—A-(VXB).
Apply this formula with A=W XV and B=BS(V) to get
V(WX V)XBS(V))=BS(V)«(VX(WXV)),
since the term
(WXV)«(VXBS(V))=(WXV)-V=0,

because V is divergence-free and tangent to the boundary of Q.
Thus

(BS(V),[V,W])=(BS(V),VX (WX V))

=fﬂ};s(V)-(Vx(Wx V))d(vol)

=fnv.((w>< V)X BS(V))d(vol)

=jﬂ((w>< V) XBS(V))+n d(area)
el

- f [ (BS(V)X(VXW))n d(area)
[
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= f Q((BS(V)-W)V-— (BS(V)-V)W)-n d(area)
é

=~J (BS(V)+V)(W-n) d(area),
a0

since V is tangent to o).
The middle term in our expression for d/dt|,-oH(V,),

f (W'n)V-BS(V)d(area)=f (BS(V)-V)(W-n) d(area),
N 0

needs no further modification.
We process the final term as follows.

J;) W-V(BS(V)-V)d(vol)= fQV°((BS(V)-V)W) d(vol),
since W is divergence-free, and then
=j (BS(V)-V)(W-n) d(area).
oQ
Putting this all together, we get
d/dt|,=0H(V,)=2(BS(V),[V,W])+fﬂ(W-n)V-BS(V) d(area)
é

+ j W-V(BS(V)-V)d(vol).
Q

=—2f (BS(V)-V)(W-n)d(area)+f (BS(V)-V)(W+n) d(area)
a0 ’ F)

+ f (BS(V)-V)(W-n) d(area)=0,
aQ

completing the proof of Theorem A.

D. A general first variation formula for helicity

We continue to assume that the vector field V is divergence-free and tangent to the boundary
of (), but for this section only we give up the assumption that the deformation &,:Q—Q, is
volume preserving, and hence lose the condition that W is divergence-free.

As a result, the helicity H(V,) will no longer be independent of ¢; instead, we will derive a
first variation formula for helicity involving the term

f BS(V)-V)(V-W) d(vol).

To get this formula, we simply miodify the proof of Theorem A at the three locations where we
used the old hypothesis that V-W=0, as follows.

First, at the beginning of the proof, when we apply the transport theorem, we must now add
the above integral into our formula for the first variation of helicity.
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But now we let V be any smooth vector field on €2, thus an arbitrary member of VF({}). We

do not assume that V is divergence-free, and we do not assume that V is tangent to the boundary
of Q.

Our first variation of energy formula will be presented in a way which makes clear the
simplifying effects of the various special assumptions about V.

Let h,:Q0—Q, be a smooth one-parameter family of volume-preserving diffeomorphisms of
() into three-space. As before, we define the vector field W on Q by W(x)=d/dt|,~oh,(x). Since
the deformation is volume preserving, W is divergence-free.

Again we let our original vector field V on () be carried along by the deformation, and so
define the vector field V, on Q, by the formula V,=(h DxV.

This time we consider the energy of the vector field V, on Q,,

E(V)= fﬂ ViV, d(vol),

and seek a useful formula for its first variation,

SE(V)=dldt|,_oE(V,).

Theorem I:
6E(V)=2(V><(V>< V),W)—Z((V-V)V,W)

+2f (V-W)(v-n)d(area)—f |V|2(W-n) d(area).
a0 0

F. Proof of Theorem |

Consider the first variation of energy,
JE(V)=d/dt|,=0E(V,)=d/dt|,=0f ViV, d(vol)
Q

- fno/oq,:O(v,-v,) d(vol),

since the diffeomorphisms # : are volume preserving.
Continuing, we get

fQD/Dﬂ,:o( V,V,) d(vol)=2 fn V-DV,/Dt|,-¢ d(vol)
=2]QV~([V,W]+(W°V)V)d(VOl)
=2f V{V,W] d(vol)+f W-V|V|? d(vol).
Q Q

The first integral on the right is simply the L? inner product 2(V,[V, W1).
The second integral on the right can be written as

f0V~<lV|2W) d(vol),

since W is divergence-free, and then as
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f [V|>W-n d(area)
a0

by the divergence theorem.
So we have shown that

SE(V)=2(V,[V,W])+ LQIVPW-n d(area).

This formula can be regarded as a way station on route to our final answer. It is useful in itself
if [V,W]=0, which means that Vi(x) agrees with V(x) to first order at =0. In that case

SE(V)= Lﬂlv[zw-n d(area),

which, upon a moment’s reflection, is intuitively plausible.

However, in general we will do better to further process the term (V,[v,W]).

Our handling of the term (V,[V,W]) here will be very similar to our treatment of the term
(BS(V),[V,W]) in the proof of Theorem A.

Once again we use from vector calculus the formula

VXA XB)=(B-V)A—(A°V)B+A(V-B)—B(V-A)=[B,A]+A(V-B)-—B(V-A),

again with A=W and B=V, but this time we only know that V-W=0.
We get

VX (WX V)=[V,W]+ W(V-V),
or
[V.W]=VX(WX V)~ W(V-V).
Thus
(V.[V,.WD)y=(V,VX (WX V))—(V,W(V-V)).

Focus on the first term on the right, and let us try to take the curl operator away from (WX V)
and give it to V. To this end, we once again recall the formula:

V(AXB)=(VXA)-B—A-(VXB).
This time we apply the formula with A=V and B= Wx V to get
VA(VX(WXV))=(VXV)-(WX V)=V(VX(WXV)),
or
VA(VX(WXV))=(VX V) (WX V)+V(VX(VXW)).

Now integrate this last formula over ) and apply the divergence theorem to get
(V.VX(WXV))=(VXV,Wx V)y+ f (VX(VXW))n d(area)
a0

=(V><(V><V),W)+jﬂ(V-W)(V-n)'d(area)—LQIVIZW-nd(area).
3.
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Again in the middle, where we process the term 2(BS(V),[V,W]), we must now use the
identity

[V,W]=VX(WXV)+V(V-W),
and so gain the term 2(BS(V),V(V-W)), which is twice the above integral.

And finally at the end, when we process the term [ o W-V(BS(V)-V) d(vol), we must now use
the identity

W-V(BS(V)-V)=V-((BS(V)-V)W)— (BS(V)-V)(V-W),

and therefore must subtract our new integral from the formula.
The net result, 1+2—1=2, is that we must now add twice our new integral to the old first

variation formula for helicity. Since helicity was invariant under volume-preserving deformations,
the new formula reads

SH(V)=2 fQ(BS(V)-V)(V-W) d(vol).

We can do a spot check on this new formula, as follows.

Let k, be a gradual expansion of all of three-space defined by h (x)=(1+1t)x, and then
restrict k, to the domain (). The initial velocity field W of this deformation is the position vector .

r=xt+yy+z2,
and hence V-W=3. The vector field V, on Q,=(1+1)Q is defined by the formula

V((1+)x)=(1+1)V(x).
But then in the helicity formula

H(V)=(1/4m) jﬂxQV(x) X V(y)*(x=y)/|x—y|>d(vol,) d(vol,),

each term in the integrand, including d(vol,) and d(voly), will be multiplied by an appropriate
power of (1+¢) when computing H(V,), with the net result

H(V)=(1+1)°H(V).

It follows that
SH(V)=(dldt)H(V,)|,=¢=6H(V).
Since V-W=3, we get the same result from our new formula,

SH(V)=2 fQ(BS(V)-V)(V-W) d(vol),

=6f BS(V)-Vd(vol)
y)

=6H(V),

providing a morsel of confirmation.

E. Variation of energy

As usual, () is a compact domain in three-space with smooth boundary.
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where the last equality relies on the identity
VX(VXW)=(V-W)V—(V-V)W.

Finally, we get
6E(V)=2(V,[V,W])+LQ|V|2W-n d(area)

=2(V,VX(WX V))—2(V,W(V-V))+LQIV|2W~n d(area)

=2(V><(V><V),W)+2LQ(V-W)(V-n)d(area)—ZLQ|V|2W°n d(area)
—2(V,W(V-V))+LQIV|2W-n d(area)

=2(VX(VX V),W)—2((V-V)V,W)+ZLQ(VW)(V-n)d(area)
—Lﬂlvlzw-n d(area),

completing the proof of Theorem 1.

G. Proof of Theorem B and other corollaries to Theorem |

Consider once again the first variation of energy formula given by Theorem I:
SE(V)=2(VX(VXV),W)=2((V-V)V,W)

+Zf (V-W)(V-n)d(area)—f |V|?W-n d(area).
o0 o0

If V is divergence-free, then the second term on the right vanishes; if V is tangent to the
boundary of (), then the third term vanishes.
We are left with :

SE(V)=2(VX(VXV),W)— J’60|V|2(W'n) d(area),

which is exactly the assertion of Theorem B.
We turn now to a sequence of corollaries to Theorem I
Corollary 1: If V is divergence-free and tangent to the boundary of its domain (), then

SE(V)=—2((V-V)V,W).

Proof: We begin with the formula of Theorem B, and make the substitution

f |V|2W-nd(area)=f V-(IVIZW)d(vol)=f (V|V]?)-W d(vol),
a0 Q Q

since W is divergence-free, to get
SE(V)=(2VX(VXV)=V|V|2,W).

Then we use the formula

he

t
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V(A'B)=AX(VXB)+BX(VXA)+(A-V)B+(B-V)A,
with A=B=V to get
VIVI2=2VX (VX V) +2(V-V)V,

from which the desired result follows.

Corollary 2: If V is divergence-free and tangent to the boundary of ), then SE(V)=0 for all
divergence-free W if and only if (V-V)V is the gradient of a function which vanishes on ).

Proof: Recall, from the Hodge decomposition theorem, that the vector fields on £ which are
gradients of functions vanishing on &) form the subspace GG of grounded gradients, which is the
orthogonal complement inside VF (£2) of the subspace of divergence-free vector fields.

Then Corollary 2 follows immediately from Corollary 1.

Corollary 3: Let V be divergence-free and tangent to Q, and suppose that SE(V)=0 for all
divergence-free W. Then on ), the orbits of V are constant speed geodesics.

Caution: That constant speed may, at least in principle, vary from geodesic to geodesic.

Proof: Let g,(p) be the orbit of V which at time 0 passes through the point p. Thus
(dldt) g (p)=V(g,(p)). '

A straightforward computation shows that the acceleration along this orbit is given by

(dz/dtz)gt(p) = ((V-V)V)(g,(p)).

Now the hypotheses on V imply, by Corollary 2, that (V-V)V is the gradient of a function that
vanishes on &), and hence that (V-V)V is orthogonal to 4Q.

Thus if p, and hence the orbit g:(p) through it, lie on A, then the acceleration vector
(dz/dt2)g,(p) is orthogonal to J(2, and therefore this orbit is a constant speed geodesic on ).

Corollary 4: [f V is divergence-free and tangent to the boundary of ), and is an eigenfield of
the curl operator, then

5E(V)=—LQIVIZ(W-n)d(area).

Proof: This follows immediately from the first variation formula for the energy given in

Theorem I, since the hypotheses on V imply that the first three terms on the right-hand side of the
formula vanish.

Note that if the vector field V is an eigenfield of the modified Biot—Savart operator BS’, then
it is also an eigenfield of curl, according to Theorem H, and hence the above formula holds.

In particular, this formula holds when the vector field V maximizes helicity for given energy.

Corollary 5: If V is divergence-free and tangent to the boundary of (), and is an eigenfield of
the curl operator, then SE (V)=0 for all volume-preserving deformations of ) if and only if | 14
is constant on the boundary of each component of (). )

Proof: We begin with the formula of Corollary 4 for SE(V) under these circumstances:

6E(V)=—LQIVIZ(Wm)d(area).

Since W is divergence-free, we have f oq,W+n d(area)=0 for each component ; of Q. So if
[V| is constant on each dQ;, we get

SE(V)=— LQIVP(W-n) d(area) = —Z LQ‘IVIZ(W-n)' d(area)

== |V|2f W-n d(area)=0.
7 o0,
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FIG. 4. An example of variation of energy.

If | V| is not constant on the boundary of the component {); of £, pick two points p and g on
d€); where |V(p)|#|V(q)|. Connect p and g by a thin tube running through Q;. Then define a
volume-preserving deformation ,:{)— Q, which is entirely supported on this thin tube, pushing
the material in it so that it dimples in from J{); near p and bulges out near g. The corresponding
initial velocity vector field W(x)=d/dt|,_oh,(x) is also supported in this tube, and satisfies
(W-n)=<0 on 9Q); near p and (W-n)=0 on 3{); near g, and of course [ 20,W+n d(area)=0. Then
clearly

6E(V)=-—f |V|2(W~n)d(area)=—f |VI*(W+n) d(area) #0,
, oQ a0,
completing the proof of the corollary.

H. Variation of energy—an illustrative example

The domain () in this example is the spherical shell centered at the origin in three-space, with
boundary spheres of radii a<b (see Fig. 4).
The vector field V, given in spherical coordinates by

V=rsiné ¢,

is the velocity field of rigid rotation of R® about the z axis, and is divergence-free and tangent to
the boundary of ().
The vector field

W=(1/r)#,

defined on R*- origin, is divergence-free and is the infinitesimal génerator of the one-parameter
group {h,} of volume-preserving diffeomorphisms of R>— origin, given by

h(r,0,0)=((r*+31)'3,0,¢).

The vector field V is invariant under the flow {A,}, that is, (h D V=V.
The energy
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E(V)=fnlvl2d(vol)'

of V inside () can be computed by straightforward integration, and has the value
E(V)=(87/15)(b°—a’).
Let ,=h,(Q) and V,=(h,),V=V. The energy E, of V, inside £, is given by
E(V,)=(8m/15)((b3+31)°P—(a>+31)%?),
and hence
SE(V)=(d/dt)|,=oE,= (8 w/3)(b%*—a?).

Now consider the formula
SE(V)=2(V, [V,W])+f ]VIZ(W-n)d(area),
a0

obtained during the proof of Theorem I In the present example, [V,W]=0, so the formula
simplifies to

5E(V)=LﬂV%W—n)a’(area).

The right-hand side can be computed by direct integration, yielding (8 7/3)(b2—a?), which
coincides with the value obtained above by computing the left-hand side directly.
Now consider the formula

SE(V)=2(VX(VXV),W)— IQ]Vlz(W-n) d(area),
0!

from Theorem B.

Direct computation shows that the first term on the right-hand side is (167/3)(b%— a?), thus
providing yet another confirmation.

Proof of Theorem C

Recall the setup. Q is a compact domain with smooth boundary in three-space. V is a
divergence-free vector field defined on () and tangent to its boundary. h,:Q1—(, is a smooth
volume-preserving deformation of (), with h, the identity. W is the vector field on  defined by

W(x)=d/dt|,~oh,(x).
We are seeking a first variation formula for the Rayleigh quotient
N(V)=H(V)/E(V),
that is to say, a formula for

SN(V)=d/dt],_ o\ (V).

The first part of Theorem C asserts that

—2{VX(VXV).W)+ [ 30 |VI*(W-n) d(area)

SMVI=MV) o [VI*d(vol)
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This is an easy consequence of Theorems A and B, as follows.
According to Theorem A,

SH(V)=0.
Hence

SN(V)= S(H(V)/E(V))
=(—H(V)/E(V)*)SE(V)
=(H(V)/E(V))(— 8E(V)/E(V))
=N(V)(— SE(V)/E(V)).

Substituting the value

SE(V)=2(VX(VXV),W)— LQ|V|2(W-n) d(area)

from Theorem B, and the definition

B(v)= | VP,

we get the desired formula for SA(V).

The second part of Theorem C asserts that if V is an eigenfield of the modified Biot—Savart
operator BS’, say BS’(V)=A(V)V, then

S s |VI*(W+n) d(area)

MVI=MV) = TV d(veD

We saw earlier that curl is a left inverse to BS’. Hence VX V=\(V)~!V. Thus we have
VX(VXV)=0, and so the second part of Theorem C follows from the first.

The third part of Theorem C asserts that if this eigenfield V corresponds to the largest
eigenvalue A(Q2) of BS' on (), then

[ s |VI2(Wen) d(area)

SN (Q)=AN(Q) fa [VIZd(vol)

In this case, A(2)=N\(V). At the same time, A(Q,)=\(V,). We signal this by writing
N ()= 6N (V), without meaning to suggest that A({),) depends differentiably on . Thus the
third part of Theorem C follows from the second.

Theorem C is proved.

F. An alternative version of Theorem C

As mentioned in the Introduction, the largest eigenvalue of a smooth one-parameter family of
self-adjoint matrices does not always vary smoothly, and, as a result of this, our first variation

formula for the largest eigenvalue A({2) of the modified Biot—Savart operator BS’ appears as an
inequality rather than an equality:

o |VIA(W-n) d(area)

M=M= 9T a(vol)

In this section we will describe an alternative first variation formula which appears as an
equality.
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We begin with a compact domain Q with smooth boundary in three-space, and a smooth
volume-preserving deformation 4,:Q—(,, which depends analytically on t, with h¢ the identity.
We are interested in the eigenvalues and eigenfields of the modified Biot—Savart operators

BS!: K(92,)—K(Q,).

Recall that the eigenfields lie in K({2,), rather than in its L? completion, as a consequence of
elliptic regularity.

Consider a single eigenvalue \ of BS’ =BS, of finite multiplicity m. We assume that I is an
interval of real numbers containing the eigenvalue \ and no other eigenvalues of BS'. Then the
Rellich perturbation theorem'® can be used to show that for ¢ sufficiently small, there exist m
real-valued functions \(z),...,\,,(t), each taking the value A\ when t=0, and each depending
analytically on ¢, such that the portion of the spectrum of BS, which lies within the interval /
consists of just these eigenvalues, with total multiplicity m. Moreover, the theorem promises that
there are m vector fields V(1),...,V,,(t) in K(Q,), each depending analytically on ¢, which form
a corresponding orthonormal system of eigenfields. : .

Now let A;(¢) and V,(t) be one of the above eigenvalue functions and its corresponding
eigenfield function. We have A=\;(0); for simplicity of notation, we will write V= Vi(0), and
also ON=d\(1)/dt|,~o. As usual, W will denote the initial velocity vector field of the deforma-
tion h,.

Then the following first variation equality holds:

J o |VI2(W-n) d(area)
Ja |V]*d(vol)

ON=\

We left the denominator in place on the right-hand side to cover the case when V does not
have L? norm equal to 1.

We compare this first variation formula with that appearing in Theorem C:

(1) The above formula is an equality, while its counterpart in Theorem C is an inequality.

(2) The above formula requires the smooth deformation of domain to be analytic in the time
parameter 7, unlike its counterpart in Theorem C. Indeed, the Rellich perturbation theorem is
false when the family of operators is only C* in r.

(3) The above formula holds for all eigenvalues A of BS’, but only for the eigenvalue functions
promised by the Rellich theorem; in particular, the largest eigenvalue function A(£,) may not

“be analytic in . By contrast, the corresponding formula in Theorem C holds for the largest
eigenvalue function A((,).

(4) The above formula holds only for the eigenfields promised by the Rellich theorem; in par-
ticular, we do not get to choose the eigenfield V. By contrast, the corresponding formula in
Theorem C holds for all the eigenfields V with eigenvalue \(£2).

In the proof of the above first variation formula, we replace the various modified Biot—Savart
operators BS, by their inverse curl operators. and then pull all these operators back to the fixed
domain €} to permit application of the Rellich perturbation theorem. We will not use the above
formula in this paper, and so omit its proof.

K. Proof of Theorem D

Now we suppose that the vector field V on the compact, smoothly bounded domain {} maxi-
mizes helicity among all divergence-free vector fields of given nonzero energy, defined on and
tangent to the boundary of all such domains of given volume in three-space.
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We must show that

(1) |V| is a nonzero constant on the boundary of each component of ().
(2) All the components of 3} are tori.
(3) The orbits of V are geodesics on J€).

To start, the fact that V maximizes helicity for given energy on () tells us that V must be an
eigenfield of the modified Biot—Savart operator BS’ corresponding to the largest eigenvalue
AV)=A(Q).

Furthermore, the fact that V on ) maximizes helicity for given energy among all domains
having the same volume as () tells us that S\ (V) =0 for all volume-preserving deformations of ().
Otherwise there would be a volume-preserving deformation of {) for which \(V)>0. Then by
part 3 of Theorem C, we would have S\ ()>0, contrary to assumption.

We must also have SE(V)=0 for all volume-preserving deformations, since

ON(V)=N(V)(= SE(V)/E(V)).

Then from Corollary 3 to Theorem I we learn that the orbits of V are constant speed geodesics
on ), while from Corollary 5 we see that |V| must be constant on the boundary of each compo-
nent of Q.

It remains to see why each of these constants must be nonzero. Once this is in hand, it will
follow immediately that all the components of 3 are tori.

Vainshtein’s lemma'® (1992): Suppose the vector field V defined on the compact, smoothly
bounded domain ) is divergence-free and an eigenfield of curl.

If V=0 on K, then V=0 throughout ).

Proof: Following Vainshtein, we define the vector field

U=3V|’r—(r-V)V,

where r is the position vector field in three-space, and will show in the following sublemma that

V-U=3V|* as a consequence of the hypotheses that V is divergence-free and an eigenfield of
curl.

Assuming this for the moment, we then have

f %|V|2d(vol)=f V-Ud(vol)=f U:n d(area)=0,
Q Q- a0

since U=0 on .
Thus V=0 throughout ), as claimed. ,
Sublemma: Let V be any vector field, and define the vector field U by

U=3V|*’r—(r-V)V.
Then
V-U=3V|?+ (VX(VXV))r—(r-V)(V-V).
Hence if V is divergence-free and an eigenfield of curl, we get
V-U=3V|2

Proof: The argument seems to us a bit clumsy in the notation we have been using throughout
this paper, but effortless in subscript notation with respect to rectangular coordinates.

In that notation, the vector A=(a, »d3,a3) in rectangular coordinates is simply recorded as
a;. Thus the position vector r=(x,,x,,x3) appears as x; .

Summation convention over repeated indices is employed, so that
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A‘B=a;b;.
The partial derivative dv;/dx; is recorded as v, ;, and thus
VV=v,,;.
In this style, the triple vector product is given by
(AXB)-C=o0a;bjc,

where o075, takes the value 1 if ijk is an even permutation of 123, the value —1 if it is an odd
permutation of 123, and the value 0 otherwise.
Fina_lly, the curl appears as

VXV= O'ijk(vj,,-—vi,j).
With this notation, the proof simply flows:
=yp.= 1 :
U—u,-—gvjvjx,-—xjvjvi,
— = L — — -
V-U—ui,,-—vjvj’,-x,-+ 200X i — X U0, XU U= XU ;.

Now the divergence x; ; of the position vector r is 3 and the partial derivative x; ; is 1 if j=i
and 0 if j#i, so our expression for V-U simplifies to

= 3 - - -
V-U—vjvj,,-x,-+2vjvj vjvj xjvj,,-v,- xjvjv,-,,-

vjvj+v]-vj,,-x,-—vivj,,-xj—xjvjv,-',-

N—

=1 —_ -
=500;+0(vi—v; )xi— X004,

where the last line is obtained by interchanging the subscripts i and j in the third term of the line
above it.

This is exactly the formula we want: the first term on the last line above is 3| V|?, the second
can be recognized as the triple product (VX (VX V))-r by using the subscript formulas for curl
and triple product, and the third term is (r-V)(V-:V). '

This completes the proof of the sublemma and, with it, that of Vainshtein’s lemma.

L. Conclusion of the proof of Theorem D

We have already seen that |V| must be constant on the boundary of each component of , and
are left with the task of showing that each of these constants must be nonzero.

At the beginning of the proof, we noted that if V satisfies the hypotheses of Theorem D, then
it must be an eigenfield of the modified Biot—Savart operator BS’. Hence, as we saw earlier, it
must also be an eigenfield of curl. Therefore V, since it is divergence-free, satisfies the hypotheses
of Vainshtein’s lemma.

Suppose that the constant value of |V| on the boundary of the component {); of () is zero.
Apply Vainshtein’s lemma to that component to conclude that V must be identically zero through-
out {);.

Since V has nonzero energy by hypothesis, there must be other components of {} where V
does not vanish. Write 1=, U}, where (), is the union of the components of ) where V does
not vanish, and (), is the union of the components where V does vanish. We intend to replace ()
by a scaled up version of ().

To do this. delete ), and multiply ; by the factor k>1 so that

vol kQ=k3vol Q,=vol Q;
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carry the vector field V on (2, along with the expansion to give the vector field kV on k€2, . Then
a glance at the formulas for helicity and energy shows that

H(kV)=k°H(V) while E(kV)=kE(V).

Hence the ratio of helicity to energy has increased by the factor k> 1, contrary to the hypothesis
that the original vector field V on ()} maximized helicity for given energy and given volume of
domain.

It follows that V cannot vanish on any of the components of (), and hence that on the
boundary of each of these components, |V| must be a nonzero constant.

Then each boundary component of £, since it supports a nowhere-vanishing vector field, must
have Euler characteristic zero, and hence be a torus.

We saw earlier that the orbits of V are geodesics on &), and so we are now finished with the
proof of Theorem D.

M. Optimal domains

The goal of the isoperimetric problem in the setting of this paper is to maximize helicity

among all divergence-free vector fields of given energy, defined on and tangent to the boundary of
all domains of given volume in three-space.

Theorem E provides an upper bound for these helicities.

Theorem D tells us some features of an optimal (that is, helicity-maximizing) domain, and of
the helicity-maximizing vector field on it.

But how do we find such a domain? .
Suppose we begin with the vector field V which maximizes helicity for given nonzero energy
on a round ball {}, the Woltjer spheromak field described earlier and pictured in Fig. 2.

We seek a volume-preserving deformation of £ which increases MQQ), guided by the inequal-
ity of Theorem C:

J s |VI*(W-n) d(area)
Ja [V]* d(vol)

SN Q)= ()

We maximize the right-hand side by choosing
Wen=|V|?—average value of | V|2on 5Q.

Then we imagine a volume-preserving deformation of ) whose initial velocity field W has
this preassigned normal component along the boundary. The deformation begins by dimpling )
inwards near the poles and bulging it outwards near the equator, making the ball look somewhat
like an apple. We repeat this calculation at each stage of the deformation, trying to follow a path
of steepest ascent for the largest eigenvalue of the modified Biot—Savart operator.

We believe that this procedure will continue to dimple the apple inwards at the poles and
bulge it outwards at the equator, until it reaches roughly the shape pictured in Fig. 5, which then
maximizes the largest eigenvalue A(2) of the modified Biot—Savart operator among all domains of
given volume. We think of this domain either as an extreme apple, in which the north and south
poles have been pressed together, or as an extreme solid torus, in which the hole has been shrunk
to a point. We also show in Fig. 5 the expected appearance of the helicity-maximizing vector field.
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FIG. 5. The expected optimal domain and field.

Comparison of this picture with those of the helicity maximizers on the flat solid torus and on
the round ball, given in Figs. 1 and 2, shows that we expect the common underlying pattern to
persist even as the domain becomes singular.

A computational search for this singular optimal domain and the helicity-maximizing vector
field on it is at present under way, guided by a discrete version of the evolution described above.
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