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We extend the theory of Euler integration from the class of con-
structible functions to that of R-valued functions, definable with
respect to an o-minimal structure. The corresponding integral oper-
ator has some unusual defects (it is not a linear operator); however,
it has a compelling Morse-theoretic interpretation. In addition, we
show that it is an appropriate setting in which to do numerical anal-
ysis of Euler integrals, with applications to incomplete and uncertain
data in sensor networks.
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Integration with respect to Euler characteristic is a homo-
morphism

R
X
·dχ : CF (X) → Z from the ring of con-

structible functions CF (X) (“tame” integer-valued functions
on a topological space X) to the integers Z. It is an elegant
topological integration theory which uses as a measure the
venerable Euler characteristic χ. Euler characteristic, when
suitably defined, satisfies the fundamental property of a mea-
sure:

χ(A ∪B) = χ(A) + χ(B)− χ(A ∩B), [1]

for A and B “tame” subsets of X. We shall extend the theory
to R-valued integrands and demonstrate its utility in manag-
ing incomplete data in sensor networks.

Constructible integrands
Because the Euler characteristic is only finitely additive, one
must continually invoke the word “tame” to ensure that χ is
well-defined. The best means by which to do so it via an o-
minimal structure [21], a sequence O = (On) of Boolean
algebras of subsets of Rn satisfying a small list of axioms. El-
ements of O are called definable sets and these are “tame”
for purposes of integration theory. Examples of o-minimal
structures include (1) piecewise-linear sets; (2) semi-algebraic
sets; and (3) globally subanalytic sets. Definable functions be-
tween spaces are those whose graphs are in O. For X and Y
definable spaces, let Def(X, Y ) denote the class of compactly
supported definable functions h : X → Y , and fix as a con-
vention Def(X) = Def(X,R). Note that definable functions
are not necessarily continuous.

We briefly recall the theory of Euler integration, estab-
lished as an integration theory in the constructible setting
in [13, 18, 19, 22] and anticipated by a combinatorial ver-
sion in [2, 10, 17]. Fix an o-minimal structure O on a
space X. The geometric Euler characteristic is the func-
tion χ : O → Z which takes a definable set A ∈ O to
χ(A) =

P
i(−1)i dim HBM

i (A;R), where HBM
∗ is the Borel-

Moore homology (equivalently, singular compactly supported
homology) of A. This also has a combinatorial definition: if A
is definably homeomorphic to a finite disjoint union of (open)
simplices

`
j σj , then χ(A) =

P
j(−1)dim σj . Algebraic topol-

ogy asserts that χ is independent of the decomposition into
simplices. The Mayer-Vietoris principle asserts that χ is a
measure on O, as expressed in [1].

Let CF (X) denote the ring of constructible func-
tions: compactly supported Z-valued functions all of whose
level sets are definable. The Euler integral is the push-
forward of the trivial map X 7→ {pt} to

R
X

dχ : CF (X) →

CF ({pt}) ∼= Z satisfying
R

X
1A dχ = χ(A) for 1A the charac-

teristic function over a definable set A. From the definitions
and a telescoping sum one easily obtains:Z

X

h dχ =

∞X
s=−∞

sχ{h = s} =

∞X
s=0

χ{h > s} − χ{h < −s}.

[2]
Because the Euler integral is a pushforward, any definable
map F : X → Y induces F∗ : CF (X) → CF (Y ) satisfyingR

X
h dχ =

R
Y

F∗h dχ. Explicitly,

F∗h(y) =

Z
F−1(y)

h dχ, [3]

as a manifestation of the Fubini Theorem.
The Euler integral has been found to be an elegant and

useful tool for explaining properties of algebraic curves [3] and
stratified Morse theory [20, 4], for reconstructing objects in
integral geometry [19], for target counting in sensor networks
[1], and as an intuitive basis for the more general theory of
motivic integration [7, 6].

Real-valued integrands
We extend the definition of Euler integration to integrands in
Def(X).

A Riemann-sum definition.
Def inition 1. Given h ∈ Def(X), define:Z

X

h bdχc = lim
n→∞

1

n

Z
X

bnhcdχ. [4]Z
X

h ddχe = lim
n→∞

1

n

Z
X

dnhedχ. [5]

We establish that these limits exist and are well-defined,
though not equal.

Lemma 1. Given an affine function h ∈ Def(σ) on an open
k-simplex σ,Z

σ

h bdχc = (−1)k inf
σ

h ;

Z
σ

h ddχe = (−1)k sup
σ

h. [6]

Proof: For h affine on σ, χ{bnhc > s} = (−1)k for all
s < n infσ h, and 0 otherwise. One computes

lim
n→∞

1

n

Z
σ

bnhcdχ = lim
n→∞

1

n

∞X
s=0

χ{bnhc > s} = (−1)k inf
σ

h.

The analogous computation holds with χ{dnhe > s} = (−1)k

for all s < n supσ h, and 0 otherwise. ¥
This integration theory is robust to changes in coordi-

nates.
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Lemma 2. Integration on Def(X) with respect to bdχc and
ddχe is invariant under the right action of definable bijections
of X.

Proof: This is true for Euler integration on CF (X); thus, it
holds for

R
X
bnhc dχ and

R
X
dnhe dχ. ¥

Lemma 3. The limits in Definition 1 are well-defined.

Proof: The triangulation theorem for Def(X) [21] states
that to any h ∈ Def(X), there is a definable triangulation (a
definable bijection to a disjoint union of open affine simplices
in some Euclidean space) on which h is affine on each open
simplex. The result now follows from Lemmas 1 and 2. ¥

Integrals with respect to bdχc and ddχe are related to to-
tal variation (in the case of compactly supported continuous
functions).

Corollary 1. If M is a 1-dimensional manifold and h ∈ Def(M)
is continuous, thenZ

M

h bdχc = −
Z

M

h ddχe =
1

2
totvar(h). [7]

Proof: Apply Lemma 1 to an affine triangulation of h which
triangulates M with the maxima {pi} and minima {qj} as 0-
simplices and the intervals between them as 1-simplices. To
each minimum qj is associated two open 1-simplicies, since M
is a 1-manifold. Thus:Z

M

h bdχc =
X

i

h(pi) +
X

j

h(qj)− 2
X

j

h(qj) =
1

2
totvar(h).

This equals − R
M

h ddχe via an analogous computation. ¥
One notes that bdχc and ddχe give different though related

integrals. They are conjugate in the following sense.

Lemma 4. Z
hddχe = −

Z
−hbdχc. [8]

Proof: Apply Lemma 1 to an affine triangulation of h, and
note that supσ h = − infσ −h. ¥

Computation.Definition 1 has a Riemann-sum flavor which
extends to certain computational formulae. The following is
a definable analogue of [2].

Proposition 2. For h ∈ Def(X),Z
X

h bdχc =

Z ∞

s=0

χ{h ≥ s} − χ{h < −s} ds [9]Z
X

h ddχe =

Z ∞

s=0

χ{h > s} − χ{h ≤ −s} ds. [10]

Proof: For h ≥ 0 affine on an open k-simplex σ,Z
σ

h bdχc = (−1)k inf
σ

h =

Z ∞

0

χ(σ ∩ {h ≥ s})ds,

and for h ≤ 0, the equation holds with −χ(σ ∩ {h < −s}).
The result for

R ddχe follows from Lemma 4. ¥
It is not true that

R
X

h bdχc =
R∞
0

sχ{h = s}ds: the
proper Lebesgue generalization of [2] is the following:

Proposition 3. For h ∈ Def(X),Z
X

h bdχc = lim
ε→0+

1

ε

Z
R

s χ{s ≤ h < s + ε} ds [11]Z
X

h ddχe = lim
ε→0+

1

ε

Z
R

s χ{s < h ≤ s + ε} ds. [12]

Proof: For h affine on an open k-simplex σ, and 0 < ε suffi-
ciently small,

R
R s χ{s ≤ h < s+ε} ds = ε (−1)k

�− ε
2

+ infσ h
�

and
R
R s χ{s < h ≤ s + ε} ds = ε (−1)k

�− ε
2

+ supσ h
�
. ¥

Morse theory. One important indication that the definition ofR bdχc is correct for our purposes is the natural relation to
Morse theory: the integrals with respect to bdχc and ddχe are
Morse index weighted sums of critical values of the integrand.
This is a localization result, reducing from an integral over all
of X to an integral over an often discrete set of critical points.

Recall that a C2 function h : M → R on a smooth mani-
fold M is Morse if all critical points of h are nondegenerate, in
the sense of having a nondegenerate Hessian matrix of second
partial derivatives. Denote by C(h) the set of critical points of
h. For each p ∈ C(h), the Morse index of p, µ(p), is defined
as the number of negative eigenvalues of the Hessian at p, or,
equivalently, the dimension of the unstable manifold W u(p)
of the vector field −∇h at p.

Stratified Morse theory [9] is a powerful generalization to
triangulable spaces, including definable sets with respect to
an o-minimal structure [4, 20]. We may interpret bdχc and
ddχe in terms of the weighted stratified Morse index of the
graph of the integrand.

Def inition 2. For X ⊂ Rn definable and h ∈ Def(X), define the
co-index of h, I∗h to be the stratified Morse index of the graph
of h, Γh ⊂ X×R, with respect to the projection π : X×R→ R:

(I∗h)(x) = lim
ε′¿ε→0+

χ
�
Bε(x) ∩ {h < h(x) + ε′}

�
, [13]

where Bε(x) is the closed ball of radius ε about x ∈ X. The
index I∗ is the stratified Morse index with respect to height
function −π and is defined similarly using {h > h(x)− ε′} in
Eqn. [13].

Note that I∗, I∗ : Def(X) → CF (X), and the restriction
of these operators to CF (X) is the identity (every point of a
constructible function is a critical point). The two types of
integration on Def(X) correspond to the Morse indices of the
graph with respect to the two orientations of the graph axis
— the projections π and −π.

Theorem 4. For any continuous h ∈ Def(X),Z
X

h bdχc =

Z
X

hI∗h dχ ;

Z
X

h ddχe =

Z
X

hI∗h dχ.

[14]

Proof: On an open k-simplex σ ⊂ X ⊂ Rn in an affine tri-
angulation of h, the co-index I∗h equals (−1)dim(σ) times the
characteristic function of the closed face of σ determined by
infσ h. Since h is continuous,

R
σ

hI∗h dχ = (−1)dim(σ) infσ h.
Lemma 1 and additivity completes the proof; the analogous
proof holds for I∗ and ddχe. ¥
Corollary 5. If h is a Morse function on a closed n-manifold
M , then Z

M

h bdχc =
X

p∈C(h)

(−1)n−µ(p)h(p) [15]Z
M

h ddχe =
X

p∈C(h)

(−1)µ(p)h(p) = (−1)n

Z
M

h bdχc. [16]

Proof: For p a nondegenerate critical point on an n-manifold,
I∗(p) = (−1)n−µ(p) and I∗(p) = (−1)µ(p). ¥

Corollary 1 on total variation thus generalizes in a funda-
mental manner. Corollary 5 can also be proved directly using
classical handle-addition techniques or in terms of the Morse
complex, using the fact that the restriction of the integrand
to each unstable manifold of each critical point is unimodal
with a unique maximum at the critical point. It is also pos-
sible to express the stratified Morse index — and thus the
integral here considered — in terms of integration against a
characteristic cycle, cf. [9, 20].
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The generalization from continuous to general definable
integrands is simple, but requires, weighting I∗h by h directly.
To compute

R
X

hbdχc, one integrates the weighted co-index

lim
ε′¿ε→0+

h(x + ε′)χ
�
Bε(x) ∩ {h < h(x) + ε′}

�
[17]

with respect to dχ.

The integral operator
We consider properties of the integral operator(s) on Def(X).

Linearity. One is tempted to apply all the standard construc-
tions of sheaf theory (as in [18, 19]) to

R
X

: Def(X) → R.
However, there are some serious complications in the R-valued
theory. Our formulation of the integral on Def(X) has the
glaring disadvantage that

R
X

is no longer a homomorphism:
e.g.,

1 =

Z
[0,1]

1 bdχc 6=
Z

[0,1]

x bdχc+
Z

[0,1]

(1−x) bdχc = 1+1 = 2.

This loss of functoriality can be seen as due to the fact that
bf + gc agrees with bfc + bgc only up to a set of Lebesgue
measure zero, not χ-measure zero. The nonlinear nature of
the integral is also clear from the Morse formulation in Eqn.
[14].

The Fubini Theorem. In one sense, the change of variables
formula trivializes (Lemma 2). The more general change of
variables formula encapsulated in the Fubini theorem does
not, however, hold for non-constructible integrands. Let F :
X = Y

`
Y → Y be the projection map with fibers {p}`{p}.

Any h ∈ Def(X) is expressible as f
`

g for f, g ∈ Def(Y ). The
Fubini theorem applied to F is equivalent to the statementZ

Y

f +

Z
Y

g =

Z
X

h =

Z
Y

F∗h =

Z
Y

f + g,

where the integration is with respect to bdχc or ddχe as de-
sired. As noted above, this fails for certain f, g. There are,
however, conditions under which Fubini holds.

Theorem 6. For h ∈ Def(X), let F : X → Y be defin-
able and h-preserving (h is constant on fibers of F ). ThenR

Y
F∗hbdχc =

R
X

hbdχc, and
R

Y
F∗hddχe =

R
X

hddχe.
Proof: An application of the o-minimal Hardt theorem [21]
implies that Y has a partition into definable sets Yα such that
F−1(Yα) is definably homeomorphic to Uα × Yα for Uα defin-
able, and that F : U × Yα → Yα acts via projection. Since h
is constant on fibers of F , one computesZ

Yα

F∗hbdχc =

Z
Yα

h χ(Uα)bdχc =

Z
Uα×Yα

hbdχc.

The same holds for
R ddχe. ¥

Corollary 7. For h ∈ Def(X),
R

X
h =

R
R h∗h. In other words,Z

X

h bdχc =

Z
R

s χ{h = s}bdχc, [18]

and likewise for ddχe.

Continuity.Though the integral operator is not linear on
Def(X), it does retain some nice properties. All properties
below stated for

R bdχc hold for
R ddχe via duality.

Lemma 5. The integral
R bdχc : Def(X) → R is positively ho-

mogeneous.

Proof: For f ∈ Def(X) and λ ∈ R+, the change of variables
variables s 7→ λs in [9] gives

R
λf bdχc = λ

R
f bdχc. ¥

Integration is not continuous on Def(X) with respect to
the C0 topology. An arbitrarily large change in

R
hbdχc may

be effected by small changes to h on a (large) finite point
set. However, integration does itself define a natural “L1”-
topology on Def(X) on which integration is continuous.

Def inition 3. The L1 ε-neighborhood of h ∈ Def(X) is the in-
tersection of the C0 ε-neighborhood (definable functions with
ε-close graphs) with those functions g ∈ Def(X) satisfyingR

X
f − g bdχc < ε.

This provides a basis for what we call the L1 topology on
Def(X). As a consequence of Lemma 4, the definition is in-
dependent of the use of bdχc or ddχe. The interested reader
can speculate on other function space topologies on Def(X)
defined using

R ·bdχc.

Duality and links. There is an integral transform on CF (X)
that is the analogue of Poincaré-Verdier duality [20]. It ex-
tends seamlessly to integrals on Def(X) by means of the fol-
lowing definition.

Def inition 4. The duality operator is the integral transform
D : CF (X) → CF (X) given by

Dh(x) = lim
ε→0+

Z
X

h1Bε(x)dχ. [19]

We extend the definition to D : Def(X) → Def(X) by inte-
grating with respect to bdχc or ddχe.

We do not use different symbols for the bdχc or ddχe ver-
sions of the dual, thanks to the following:

Lemma 6. Dh is well-defined on Def(X) and independent of
whether the integration in (19) is with respect to bdχc or ddχe.
Proof: The limit is always well-defined thanks to the Conic
Theorem in o-minimal geometry [21]. To show that it is inde-
pendent of the upper- or lower-semicontinuous approximation,
take ε > 0 sufficiently small. Note that by triangulation, h
can be assumed to be piecewise-affine on open simplices. Pick
a point x in the support of h and let {σi} be the set of open
simplices whose closures contain x. Then for each i, the limit
hi(x) := limy→x h(y) for y ∈ σi exists. Then, applying [19],
one computes

Dh(x) = lim
ε→0+

X
i

(−1)dim σihi(x), [20]

independent of the measure bdχc or ddχe. ¥
For a continuous definable function h on a manifold M ,

Dh = (−1)dim Mh, as one can verify by combining Eqns. [9]
and [19]. This is commensurate with the result of Schapira
[18] that D is an involution on CF (X).

Theorem 8. Duality is involutive on Def(X): D ◦ Dh = h.

Proof: Given h, fix a triangulation on which h is affine on
open simplices. From [20], we see that the dual of h at
x is completely determined by the ‘linearization’ of h at x.
Let h̃ be the constructible function on Bε(x) which takes on
the value hi(x) on strata σi ∩ Bε(x). (Though this is not
necessarily an integer-valued function, the range is discrete
and therefore is constructible.) Then Dh(x) = Dh̃(x) and

D2h(x) = D2h̃(x) = h̃(x) = h(x). ¥
One can define related integral transforms. For example,

the link of h ∈ CF (X) is defined as

Λh(x) = lim
ε→0+

Z
X

h1∂Bε(x)dχ. [21]

The link of a continuous function on an n-manifold M is mul-
tiplication by 1 + (−1)n, as a simple computation shows. In
general, Λ = Id−D, where Id is the identity operator.
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Convolution. On a vector space V (or Lie group, more gener-
ally), a convolution operator with respect to Euler character-
istic is straightforward. Given f, g ∈ CF (V ), one defines

(f ∗ g)(x) =

Z
V

f(t)g(x− t) dχ. [22]

Convolution behaves as expected in CF (X). By re-
versing the order of integration, one has immediately thatR

V
f ∗ g dχ =

R
V

f dχ
R

V
g dχ. There is a close relationship

between convolution and the Minkowski sum, as observed in,
e.g., [10]: for A and B convex, 1A ∗ 1B = 1A+B , cf. [22, 18].
Convolution is a commutative, associative operator providing
CF (V ) with the structure of an (interesting [3]) algebra.

Convolution is well-defined on Def(V ). However, the prod-
uct formula for

R
f ∗ g fails, since one relies on the Fubini

theorem to prove it in CF (V ).

Numerical integration
The mélange of combinatorial, analytic, and homological fea-
tures of bdχc and ddχe permits a wealth of computational
formulae. The following result is a simple generalization of an
argument in [1] in the constructible category.

Proposition 9. Let h ∈ Def(R2). Then
R

h bdχc equalsZ ∞

s=0

β0{h ≥ s}+ β0{h ≥ −s} − β0{h < s} − β0{h < −s} ds,

[23]
where β0(·) denotes the zeroth Betti number, the rank of
H0(·;R).

Proof: Apply the homological definition of χ to [9]; then, use
Alexander duality in the plane to reduce all terms to β0 quan-
tities. ¥

The value of Proposition 9 is that it allows for compu-
tation based on β0 quantities. Such connectivity data are
easily obtained via clustering algorithms, even from a discrete
sampling. The Lebesgue integral is easily discretized and well-
behaved; we have implemented this formula in software.

Refinement.The utility of Euler integration compels ques-
tions of efficient, accurate computation given a discrete sam-
pling of the integrand. The continuity of the integral operator
implies the following.

Theorem 10. For h ∈ Def(X) continuous, let hPL be the
piecewise-linear function obtained from sampling h on the ver-
tex set of a triangulation T of X. As the sampling and trian-
gulation are refined,

lim
|T |→0+

Z
X

hPLbdχc =

Z
X

hbdχc. [24]

What one really desires, however, is a measure of how far
a given sampling is from the true integral. This seems to be
a challenging problem.

Toward applications
The Euler calculus on CF is quite useful; the extension to
Def deepens these and opens new potential applications. We
highlight a few below, omitting details for the time being.

Sensor networks.The application of Euler integration over
CF (X) to sensor networks problems was initiated in [1]. Con-
sider a space X whose points represent target-counting sensors
that scan a workspace W . Target detection is encoded in a
sensing relation S ⊂ W ×X where (w, x) ∈ S iff a target

at w is detected by a sensor at x. Assume that sensors count
the number of sensed targets, but do not locate or identify
the targets. The sensor network therefore induces a target
counting function h : X → N of the form h =

P
α 1Uα ,

where Uα is the target support — the set of sensors which
detect target α. Euler integration allows for simple enumera-
tion:

Theorem 11. ([1]) Assume h ∈ CF (X) and χ(Uα) = N 6= 0 for
all α. Then the number of targets in W is precisely 1

N

R
X

h dχ.

Since the target count is presented as an integral, it is pos-
sible to accurately estimate the answer when the integrand h
is known not on all of X (a continuum of sensors being highly
unrealistic in practice) but rather on a sufficiently dense grid
of sample points (physical sensors in a network).

The R-valued theory aids in establishing expected values
of target counts in the presence of confidence measures on
sensor readings. Let N = {xi} denote a discrete set of sensor
nodes in Rn, and assume each sensor returns a target count
h(xi) ∈ N and a fluctuation measure c(xi) ∈ [0, 1] obtained,
say, by stability of the reading over a time average. View h
as a sampling over N of the true target count f =

P
α 1Uα .

Assume that nodes with fluctuation reading 0 have perfect
information (h = f at xi) and that c correlates with error
|f − h|. Assume that sensor nodes N are part of a network
whose edges E are based roughly on proximity.

The integral of an extension of f over a triangulation gives
a terrible approximation to

R
h dχ: an error of ±1 on K nodes

can cause a change in the integral of order K. More specif-
ically, if h = f + e, where e : N → {−1, 0, 1} is an error
function that is nonzero on a sparse subset N ′ ⊂ N , then, for
certain infelicitous choices of N ′,

��R h− R f
�� = |N ′|.

A R-valued (and in particular, a harmonic) relaxation can

mitigate errors by using fluctuation c as a weight. Let h̃ be
the result of averaging the value at xi ∈ N over all neighbors,
with c as a weight. Specifically,

h̃(xi) =

P
j c(xj)h(xj)P

j c(xj)
, [25]

where the sums are over all j such that xj is no more than
one edge away from xi. Since averaging damps out local varia-
tions, the resulting integral will tend to mitigate point-errors,
thanks to the Morse-theoretic formula.

Such averaging naturally leads to non integer-valued in-
tegrands. By using integration with respect to bdχc or ddχe
for upper/lower semi-continuous integrands associated to such

an averaged signal h̃, one obtains an expected value of
R

h dχ.
This can be particularly illuminating when a network has in-
complete information, e.g., a hole.

Statistics and mode counting. The previous application lends
itself to more general statistical ends. Consider a distribution
f : X → [0,∞) of compact support and bounded variation.
The statistical problem of mode-counting — of decomposing
f into a convex combination of unimodal summands — bears
no small resemblance to the problem of target enumeration.

Indeed, the nonlinearity of the integral operator with re-
spect to bdχc and ddχe mirrors the nonlinear interaction of
unimodal summands in a distribution. Just as two modes can
interfere, creating an artificial local maximum when an in-
creasing and a decreasing portion of the modes are summed,
the Euler integral over Def loses linearity when increasing and
decreasing integrands are combined.

The problem of mode-counting leads naturally to an ex-
tension of the Lyusternik-Schnierlmann category from sets to
continuous definable functions [?]. Euler integration with con-
tinuous integrands thus relates to this unimodal Lyusternik-
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Schnirelmann category and yields bounds on this topological
invariant.

Integral transforms. Integration with respect to Euler charac-
teristic over CF (X) has a well-defined and well-studied class
of integral transforms, expressed beautifully in Schapira’s
work on inversion formulae for the generalized Radon trans-
form in dχ [19]. Integral transforms with respect to bdχc and
ddχe are similarly appealing, with applications to signal pro-
cessing as a primary motivation. Inversion formulae for, e.g.,
convolution involve the duality operator of §.

The nonlinearily of the integration operator prevents
most straightforward applications of inversion formulae à la
Schapira. It is an interesting open problem to adapt current
techniques from inverse problems and integral transforms to
integrals with respect to Euler characteristic.

Hadwiger measures. Integration with respect to Euler char-
acteristic is the ‘zeroth-order’ Hadwiger measure from inte-
gral geometry; there is one such measure on tame sets of Rn

for each j = 0, . . . , n the nth-order measure being Lebesgue.
These are related to curvature measures [3, 8] and are of con-
temporary use in, among other things, coarsening of three-
dimensional microstructures in crystals [14].

The Hadwiger measures can be defined in terms of Euler
measure over CF via standard integral-geometric formulae.
It would appear to be a simple matter to modify these defini-
tions to accommodate the Hadwiger measures from definable
sets to definable functionals. Connections between these de-
finable Hadwiger measures and Morse-theoretic properties of
the integrands are particularly enticing.
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2003.

21. L. Van den Dries, Tame Topology and O-Minimal Structures, Cambridge University

Press, 1998.

22. O. Viro, “Some integral calculus based on Euler characteristic,” Lecture Notes in

Math., vol. 1346, Springer-Verlag, 1988, 127–138.

5


