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Abstract. We introduce a novel class of Laplacians and diffusion dynamics on discourse sheaves
as a model for network dynamics, with application to opinion dynamics on social networks. These
sheaves are algebraic data structures tethered to a network (or more general space) that can represent
various modes of communication, including selective opinion modulation and lying. After introducing
the sheaf model, we develop a sheaf Laplacian in this context and show how to evolve both opinions
and communications with diffusion dynamics over the network. Issues of controllability, reachability,
bounded confidence, and harmonic extension are addressed using this framework.
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1. Introduction. Social networks are one of the principal motivating examples
for the study of complex networks. Among the many interesting problems associated
with social networks, opinion dynamics — the study of how preferences or opinions
emerge and evolve — are especially interesting, blending ideas from dynamical systems
and graph theory. Structural effects of the network on opinion dynamics began with
the analysis of linear dynamical models [36, 15, 20] and have developed into more
sophisticated formulations [14, 17, 25], including features such as bounded confidence.
This paper introduces both a novel model and a novel set of tools for the analysis
of opinion dynamics. After a brief review of classical opinion dynamics models, we
survey the results of this paper.

1.1. Models of Opinion Dynamics. Early models of opinion dynamics used
linear network dynamics to evolve single-dimensional preferences. Consider a social
network represented as an undirected graph G = (V,E) of vertices and edges. The
state space for single-opinion real dynamics is RV , with x ∈ RV representing a distri-
bution of preferences xv ∈ R at each vertex, ranging from positive to indifferent (null)
to negative. Graph-based linear dynamics evolve preferences over time.

In continuous-time models, the graph Laplacian, L, generates dynamics via the
graph diffusion equation

(1.1)
dx

dt
= −αLx, : α > 0,

perhaps with slight modifications [1, 36]. Analogous models [18, 15, 29] were studied
in discrete time, with a (typically stochastic) state evolution matrix following the
sparsity pattern of the adjacency matrix, A, of the social network:

(1.2) x[t+ 1] = Ax[t].

Variations with more terms added additional richness to the models [20].
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Without modification, these linear graph models result in asymptotically stable
equilibria at a single consensus opinion over the network. While this global fixed con-
sensus may be useful in some situations (e.g., flocking in robotics/swarm applications
[26, 35]), it does not represent the typical behavior of opinion distributions in social
networks. Indeed, a central problem in the study of opinion dynamics is the con-
struction of simple models that replicate one of the most salient features of real-world
opinions: the existence of polarization or failure to come to consensus, known as the
community cleavage problem [19]. The earliest approaches to solving this problem
added extra constant terms to dynamics of the form (1.1) or (1.2) that encouraged di-
versity in opinions across the network [36, 20, 21]. These extra terms were interpreted
as external influences or the effect of individual stubbornness on opinions.

Much recent work has focused on a nonlinear extension of the discrete-time dy-
namics that adds bounded confidence to agents’ evaluation of their neighbors’ opinions
[14, 17, 25]. The most famous such model, popularized by Hegselmann and Krause,
posits a threshold r for opinion sharing. If agents i and j have opinions that differ
by more than r, they do not communicate. Otherwise, they influence each other’s
opinions linearly as in the discrete-time dynamics above. That is,

(1.3) xi[t+ 1] =
∑
i∼j

Aijxj1|xi−xj |<r.

These dynamics are complex enough to produce bifurcated opinion distributions with-
out external influences, while admitting some direct analysis.

Not all work on opinion dynamics has used the Laplacian or adjacency-based lin-
ear network interaction formulations above. Other popular models include dynamics
with discrete opinion spaces [34, 8] based on formalisms from statistical physics, as
well as non-agent-based models that seek to understand the overall distribution of
opinions in a population without tracking any individual’s stance [37, 7].

In this paper, we will focus on network-based continuous-time models for opinion
dynamics with continuous opinion spaces; discrete-time examples can typically be
extracted from these via Euler discretization. Our models will find most kinship with
those that approach opinion dynamics from a control-theoretic or systems analysis
perspective, like those discussed in [31, 32].

1.2. Contributions of This Work. In this paper, we introduce a novel ap-
proach to networked opinion dynamics, using ideas from sheaf theory. This subject,
commonly used in algebraic topology and algebraic geometry, is vast [27, 16, 22, 24],
but has a simple, graph-based reduction that amounts to little more than a networked
system of linear transformations (see §2 for definitions). There are three key ideas
from sheaf theory that we use:

1. Cellular sheaves are a topological data structure for graphs (or more general
cell complexes) [13], which, we argue, permits modeling of very sophisticated
opinion state spaces and communication strategies.

2. Sheaf cohomology is an algebraic-topological invariant of the sheaves over
graphs. We demonstrate its use in computing obstructions to solving prob-
lems of opinion dynamics on graphs.

3. Sheaf Laplacians are far-reaching extensions of the graph Laplacian [23] and
extend ideas of harmonic flow to a wide array of opinion dynamics models.

Although not a familiar toolset within network science, sheaf-theoretic methods have a
remarkable range of expressiveness and can encode more realistic modes of expression
of opinions, including exaggeration, modulation, and selective obfuscation.
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After setting up the relevant mathematical structures in §2, we proceed directly
to the contributions, summarized below.

1. In §3, we introduce our model of opinions over a social network via a cel-
lular sheaf. In this model, each agent has an opinion space (a vector space
with dedicated basis) and each edge has an independent discourse space (a
vector space with basis of topics up for discussion). Expression of opinions
is programmed via linear transformations from opinion to discourse spaces,
allowing for private opinions selectively expressed or combined into policies.

2. In §4, we use the sheaf Laplacian to set up diffusion dynamics on the discourse
sheaf, proving asymptotic convergence of initial opinions to a (literal) har-
monic state: all agents express opinions in harmony with neighbors, though
the private opinions of neighbors may be distinct (or even incomparable).

3. In §5, we use sheaf cohomology to characterize whether certain problems of
extension and convergence have solutions. For example, if certain agents are
inflexible and will not modify their opinions, does there exist a unique global
solution through modification of others’ opinions? We show that this is a
problem of harmonic extension, determinable via a cohomology computation.

4. The question of manipulation of a system through inflexible agents leads
naturally to questions of a control-theoretic nature. In §6, sheaf cohomology
is shown to determine the controllability and observability of opinions.

5. Using the Laplacian to evolve individual opinions in order to come to har-
monic expression is only half the picture. One could instead keep opinions
fixed and evolve the expression of opinions in order to reduce discord. In
§8, we extend the Laplacian diffusion model to the sheaf maps that express
opinions. This leads to the interesting phenomenon of agents “learning to lie”
to reach concord. The natural extension to joint opinion-expression diffusion
is given in §9.

6. Finally, in §10-12, we move from linear to (slightly) nonlinear dynamics of
opinion distributions on discourse sheaves, showing how to mimic the bounded
confidence models of [25] and the antagonistic social dynamics of [4].

2. Introduction to Cellular Sheaves. For purposes of this paper, a cellular
sheaf is a data structure augmenting a graph that describes consistency relationships
for algebraic data attached to the graph. For simplicity, we work with vector spa-
ces and linear transformations thereof. At one or two points, it will be convenient
if not necessary to have all vector spaces real, finite-dimensional, and with an inner
product structure. For the remainder of this work, we will implicitly assume these
conditions: see [23, Section 3.3] for details on how to deal with more general Hilbert
spaces. Further, for simplicity, we will assume that every vector space has a canon-
ical orthonormal basis identifying it with Rn for some n, and identify linear maps
with their representing matrices and the inner product 〈x, y〉 with the standard inner
product xT y on Rn.

2.1. Definitions. Let G be a graph. A cellular sheaf F on G is specified by the
following data:

• a vector space F(v) for each vertex v of G,
• a vector space F(e) for each edge e of G, and
• a linear map FvP e : F(v)→ F(e) for each incident vertex-edge pair vP e.

The vector spaces F(v) are called the stalks over v, and the linear maps FvP e are
the restriction maps. The terminology seems unmotivated and is inherited from more
general sheaf theory [13]. Thinking in terms of data (stalks) and communication
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Fig. 1. A cartoon diagram of a cellular sheaf over a graph. Vector spaces of varying dimensions
over vertices and edges are attached via linear transformations, following the adjacency pattern of
the graph. The entire system of linear transformations forms the cellular sheaf.

(restriction maps) is perhaps preferable in the context of this paper, see Figure 1.
The simplest example of a cellular sheaf is the constant sheaf. For V a fixed

vector space, the constant V -sheaf on G, denoted V , attaches a copy of V to each
vertex and edge (all stalks are V ), with V vP e = idV for all incident vertex-edge pairs
(all restriction maps are the identity). One interprets a constant sheaf as specifying
that all vertices access the same data (from V ) and communicate perfectly with their
neighbors over edges.

There is more to a sheaf than its stalks: replacing all the identity maps in V with
zero-maps (FvP e : V 7→ 0) gives a very different sheaf in which all communication is
devoid of information. Such a sheaf is a jumble in contrast to the tightly coordinated
constant sheaf V .

2.2. Sections and Sheaf Cohomology. If one visualizes a sheaf of vector
spaces over a graph as being a network of vector spaces and linear transformations,
then one is naturally led to questions of how to generalize the familiar notions of
linear algebra — kernels, images, etc. — to such a networked structure. This is the
impetus for homological algebra and the cohomology of a sheaf.

One begins by bundling all the data over vertices and over edges into a pair of
conglomerated vector spaces. These are called spaces of cochains

C0(G;F) =
⊕

v∈V (G)

F(v)(2.1)

C1(G;F) =
⊕

e∈E(G)

F(e).(2.2)

Elements of C0 are called 0-cochains: such an x ∈ C0(G;F) consists of a choice of
data, xv ∈ F(v), for every vertex v of G. Likewise, an element y ∈ C1(G;F) is called
a 1-cochain and is a choice of data indexed over the edges of G.

In the same manner that edges and vertices are stitched together to form a graph,
data over the vertices (0-cochains) and edges (1-cochains) are tied together via a
linear transformation — the coboundary map, δ : C0(G;F)→ C1(G;F). To define δ
explicitly, choose a fixed but arbitrary orientation on each edge e. Then the evaluation
of δ on an oriented edge e = u→ v is defined as follows:

(2.3) (δx)e = FvP exv −FuP exu.

The orientation merely serves as a choice of basis elements for defining the difference
operation in δ. That choice is irrelevant, as what one cares about is the kernel of δ.



OPINION DYNAMICS ON DISCOURSE SHEAVES 5

If one thinks about the coboundary δ as a measure of “disagreement” of data
across an edge, then ker δ is the subspace of C0(G;F) consisting of choices of data
over the vertex set which “agree” over the edges. That is, for every e = u ∼ v,
FuP exu = FvP exv. The set of all such solutions to the global constraint satisfaction
problem of the sheaf has the structure of a vector subspace of C0(G;F) and goes by
the title of cohomology.

For F a cellular sheaf on a graph G, the zeroth cohomology H0(G;F), also known
as the space of global sections of F , is

(2.4) H0(G;F) = ker δ ⊂ C0(G;F).

The global sections of a sheaf are the global solutions to the networked system of
constraint equations programmed into the restriction maps FuP e of the data structure
over the graph. The cohomological terminology comes from the algebraic topology of
sheaves [27, 16, 22] — a beautiful theory that can be ignored by the end-user of the
models in this paper (but which secretly animates many of the results).

Related to the space of global sections are the subspaces of local sections. For A
a subgraph of G, we let C0(A;F) =

⊕
v∈V (A) F(v) and C1(A;F) =

⊕
e∈E(A) F(e).

The coboundary δ restricts to a map C0(A;F)→ C1(A;F); its kernel is the space of
local sections over A, denoted H0(A;F). This is the subspace of C0(A;F) which is
consistent over every edge in A.

Dual to the local sections over A is the cohomology relative to A. We let
C0(G,A;F) =

⊕
v/∈V (A) F(v) and C1(G,A;F) =

⊕
e/∈E(A) F(e), and restrict δ to

a map between these spaces. The degree 0 relative cohomology is H0(G,A;F) =
ker δ|C0(G,A;F). Local sections H0(A;F) should be thought of as assignments to a
subset of vertices that are consistent on A, while the relative cohomology H0(G,A;F)
can be viewed as global sections of F on G that vanish on A.

Example 2.1. For the constant sheaf R on a connected graph G, H0(G;R) is a
one-dimensional vector space spanned by the constant functions on vertices of G. For
any nonempty subgraph A of G, H0(A;R) consists of functions on the vertices of A
which are locally constant on the subgraph; its dimension is the number of connected
components of A. The relative cohomology H0(G,A;R) is zero-dimensional, since
any constant function which is zero on A must be zero everywhere on G.

2.3. The Sheaf Laplacian. Recall that for a graph with signed incidence ma-
trix B, the graph Laplacian is given by L = BBT . These are combinatorial versions
of the familiar second-order differential operator with enormous applicability across
combinatorics, data science, and more [11, 5, 12]. Less well-known in applied mathe-
matics is the definition of Laplacians of complexes of sheaves of inner-product spaces
over topological spaces: these arise in Hodge theory and algebraic geometry [30]. Be-
tween the graph Laplacian and Hodge Laplacian lies a mean notion of a Laplacian for
cellular sheaves on graphs [23].

The construction is uncomplicated. Observe that the coboundary δ of the con-
stant sheaf R with stalk R equals the transposed signed incidence matrix BT of the
graph G. For a sheaf F over G, δ may be seen as a generalized incidence matrix for
F . The potential variation in stalk dimensions means that δ is a block matrix, and
the restriction maps determine the block entries, with sparsity pattern determined by
the structure of G. For a sheaf F on a graph G, the sheaf Laplacian is

(2.5) LF = δT δ : C0(G;F)→ C0(G;F).
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Just as the graph Laplacian does not depend on the orientations chosen for the edges
in the signed incidence matrix, the sheaf Laplacian does not depend on the choice of
orientations for the construction of the coboundary δ.

The following theorem may seem trivial in the context of sheaves over graphs,
but it stems from deeper results (on sheaves over higher-dimensional cell complexes
and with relations to higher cohomologies).

Theorem 2.2 (Hodge Theorem). For F a sheaf on a graph G as above,

(2.6) H0(G;F) = kerLF .

Example 2.3. The well-known fact that the kernel of the graph Laplacian is the
space of locally constant functions on G follows from applying the Hodge theorem to
the constant sheaf on G.

A straightforward computation shows that for a 0-cochain x ∈ C0(G;F), the
value of the sheaf Laplacian at a given vertex v is

(2.7) (LFx)v =
∑
v,uP e

FTvP e(FvP exv −FuP exu).

This implies that the matrix of LF has a block structure, with diagonal blocks Lvv =∑
vP e FTvP eFvP e and off-diagonal blocks Lvu = −FTvP eFuP e.

In the next section, we will interpret (LFx)v as a measure of the average disagree-
ment of agent v with its neighbors, or equivalently, of the disagreement of v with an
average of its neighbors.

Example 2.4. The sheaf in Figure 2 has a coboundary map represented by the
matrix

(2.8) δ =


−2 1 −2 0 0 0
0 1 1 −1 0 0
0 0 0 −1 −1 1
0 0 0 0 0 1
1 0 0 0 −1 0

 ,
and therefore its Laplacian is

(2.9) LF = δT δ =


5 −2 4 0 −1 0
−2 2 −1 −1 0 0
4 −1 5 −1 0 0
0 −1 −1 2 1 −1
−1 0 0 1 2 −1
0 0 0 −1 −1 2

 .

The block columns of δ and LF correspond to the stalks F(vi) for i = 1, . . . , 4.

3. Discourse Sheaves. We introduce a cellular sheaf model for opinions and
discourse for which Laplacian diffusion is an effective and computable method.

Construction: Given a social network presented as a graph G with vertices rep-
resenting agents and (undirected) edges representing pairwise communication, con-
sider the following discourse sheaf F . Each agent (vertex) v has an opinion space, a
real vector space with basis some collection of topics. As with classical opinion dynam-
ics models, points on each axis correspond to negative, neutral, or positive opinions
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Fig. 2. A cellular sheaf over a simple cyclic graph. All stalks are of dimension one or two.

Fig. 3. In a discourse sheaf, stalks over vertices are individual opinion spaces, stalks over edges
are discourse spaces, and restriction maps are expressions of opinions on the topics of discourse,
formulated linearly from basis opinions.

on the topic, with a positive/negative intensity registered by the scalar value. This
opinion space comprises the stalk F(v) of the discourse sheaf over v. A choice of
element xv ∈ F(v) is a vector recording the intensities of opinions or preferences on
each of the basis topics.

Given an edge e between vertices u and v, it is presumed that there is a certain
set of basis topics about which the two agent discuss. These are not necessarily the
same as any of the basis topics from which F(u) or F(v) are generated; however, they
do form the basis of an abstract discourse space, F(e), the stalk over e.

Each agent represents their opinions on the topics of discussion by formulat-
ing stances as a linear combination of existing opinions on personal basis topics.
These expressions of opinion are linear transformations FuP e : F(u) → F(e) and
FvP e : F(v) → F(e). If the agents hold opinions xu ∈ F(u) and xv ∈ F(v), then
they have expressed consensus when FuP e(xu) = FvP e(xv). This is the local consis-
tency condition implicit in the construction of a sheaf — each edge imposes a linear
consistency constraint on the stalks of its incident vertices. Note that this does not im-
ply that u and v have the same opinions: it means that their expressions of personally
held opinions have the appearance of agreement.

The apparatus of §2 becomes clearer in the context of discourse sheaves.
• The constant sheaf Rn is a discourse sheaf in which every agent has an opinion

on the same n basis topics, all of which are precisely expressed and discussed
without embellishment. This is the implicit structure in most of the literature
on opinion dynamics.

• A 0-cochain x ∈ C0(G;F) is a private opinion distribution on the set of
agents.

• A 1-cochain ξ ∈ C1(G;F) is a distribution of expressed opinions over all
pairwise agent discussions in the network.
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• The coboundary map δ : C0 → C1 registers the “difference of expression”
between agents based on the expression of personal opinions.

• The sheaf Laplacian LF : C0 → C0 registers the “discord” in the system.
The value of LF (x) on each vertex v represents the difference between xv
(the opinions of v) and the opinions which would bring v in harmony with all
its neighbors.

• The zeroth cohomologyH0(G;F) computes the vector space of global sections
— the space of opinion distributions in which all expressions of opinions are
in harmony. As noted in Theorem 4.1, these are literally harmonic (in the
kernel of the Laplacian).

• Relative cohomology H0(G,A;F) with respect to a subgraph A ⊂ G repre-
sents harmonic opinion distributions which vanish on A. This is a measure
of independence of the agents in A from the rest of the social network.

The discourse sheaf model is, in one sense, a mild generalization of the usual consensus
problem over graphs. However, the ability to program a sheaf with linear transforma-
tions permits a number of features not present in the literature. Consider the simple
example of three agents A, B, and C, all in pairwise communication.

• Because stalks vary from vertex-to-vertex, the discourse sheaf permits agents
to have opinions on private basis topics. Agents A, B, and C need not have
any basis topics in common.

• Because edge stalks are not identical to vertex stalks, the discourse sheaf
model does not require everyone to share all their opinions with every neigh-
bor; indeed, the topics for discussion need not relate at all to basis opinions
of agents. Agents A and B might be discussing whether to eat lunch at the
nearby pub. The edge stalk (favorability of dining at the pub) may not be
something on which either A or B has a basis opinion.

• The restriction maps allow for the formation of policies from principles. For
example, if agent A has a strong basis-opinion preference for sandwiches and
is neutral about noise, the restriction map to the edge stalk could express a
preference for dining at the (noisy, sandwich-renowned) pub. Agent B, who
has basis opinions about walking long distances (dislikes) and quick meals
(prefers) might have a restriction map that expresses dislike for the (not
nearby) pub.

• Positive scalar multiplication acts both on vectors (intensifying or damp-
ing opinions) and on restriction maps (exaggerating or modulating expressed
opinions). Negative scalar multiplication in a restriction map permits false-
hoods: one can model agents who lie. Such dissembling or deception can be
done selectively. What C says to B need not match what C says to A (even
if they are discussing the same topic).

• There are multiple ways to set up opinion dynamics on a discourse sheaf. We
begin, following the classical literature, by having individual agents change
their opinions over time. This is perhaps not how real people engage in
discourse. A different mode of evolution would permit expression of opinions
to change, in order to bring discourse to a more harmonious state. This is
achievable in the sheaf model by setting up dynamics on the restriction maps.
Co-evolution of both opinion and expression is achievable in this model.

4. Sheaf Diffusion. Just as the graph Laplacian forms the basis for simple
linear opinion dynamics, so does the sheaf Laplacian on discourse sheaves. Consider
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the heat equation

(4.1)
dx

dt
= −αLFx, : α > 0

on x ∈ C0(G;F). That is, x represents an opinion distribution, where xv ∈ F(v)
is the opinion of individual v. The diffusion dynamics tend to push the value at
a node v toward greater agreement (as measured by the sheaf structure) with the
expressed opinions of its neighbors. Our first result is that trajectories of this sheaf
heat equation converge to global sections.

Theorem 4.1. Solutions x(t) to (4.1) converge as t→∞ to the orthogonal pro-
jection of x(0) onto H0(G;F).

Proof. The sheaf Laplacian LF is symmetric and positive semidefinite, and hence
is diagonalizable with all eigenvalues nonnegative. The solution to (4.1) is

x(t) = exp(−tαLF )x(0).

This solution operator has limit limt→∞ exp(−tαLF ) equal to zero except on a block-
diagonal identity submatrix corresponding to the zero eigenvalues. This is orthogonal
projection onto kerLF = H0(G;F).

Theorem 4.1 has several consequences. One is that the only stable opinion dis-
tributions are global sections of the discourse sheaf. If this sheaf has no nontrivial
global sections, the only stable opinions will be everywhere zero: an uninteresting
solution. Further, opinions converge exponentially to a stable distribution, with rate
of convergence related to the spectral properties of the sheaf Laplacian [23].

The corresponding result for the graph Laplacian-based dynamics is that opinions
converge toward the average of the initial opinion distribution. Discrete-time local
averaging dynamics (with appropriately connected graphs) display a bit more flexi-
bility, but admit only a limiting distribution that is a weighted average of the initial
state. With sheaf Laplacian dynamics, new stable distributions are possible.

Example 4.2. (In polite company) The simple sheaf shown in Figure 4 has all
stalks of dimension one and all restriction maps of full rank: each person [vertex]
has a private opinion about a topic and expresses that opinion. For the sake of
illustration, assume that each stalk (vertex and edge) has the same basis topic —
say, opinion about a certain politician. If this were a constant sheaf, a global section
would represent consensus with identical opinions. However, as illustrated, the two
agents on the left have a positive personal opinion, whereas the two on the right have
a negative personal opinion. The restriction maps encode expression of that opinion.
Note how the discourse sheaf as illustrated permits selective expression of opinion.
The two agents on the right tell a polite lie to their neighbors on the left but are frank
with each other. A global section of this sheaf maintains the public agreement.

One notes that although each agent knows the veracity of their opinion expres-
sions, they do not know the veracity of their neighbors’ expressed opinions. Note also
that, given this structure on the discourse sheaf, any initial opinion distribution will
converge to one of these polarized distributions by Theorem 4.1. Compare the results
of [2, 3], which studied similar structures implicitly.

5. Stubbornness and Harmonic Extension. Consider a slight variation on
the diffusion equation (4.1) in which some agents are stubborn: they do not change
their opinions in response to communication with their neighbors. What consequence
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Fig. 4. A sheaf supporting stable polarized opinion distributions as global sections. The two
agents on the right lie to their neighbors on the left, but are truthful to each other.

does this have for the long-run dynamics? To answer this question, we consider the
problem of harmonic extension for partially-defined cochains on a sheaf. Our results
here and in the next two sections are extensions of ideas originally introduced by
Taylor [36] to the setting of discourse sheaves.

Let U ⊂ V be a subset of vertices of G, and let u ∈ C0(U ;F) be a 0-cochain
with support in U — a choice of a data uv ∈ F(v) for each v ∈ U . A harmonic
extension of u to the rest of the graph is a 0-cochain x ∈ C0(G;F) such that x|U = u
and (LFx)v = 0 for every v ∈ V \ U . Harmonic extensions always exist; when
H0(G,U ;F) = 0, they are unique (see [23, Proposition 4.1] for a proof).

Theorem 5.1. The U -restricted dynamics

(5.1)
dx

dt

∣∣∣∣
v

=

{
−α(LFx)v : v /∈ U

0 v ∈ U

on an initial condition x0 converges exponentially to the harmonic extension of u =
(x0)|U nearest to x0.

Proof. As u = x|U is constant, we can rewrite the dynamics as acting purely on
y = x|Y for Y = V \U . Using LF [·, ·] to denote the block submatrix restricted to the
indicated vertex sets, we can express the dynamics on y(t) as

(5.2)
dy

dt
= −α(LF [Y, Y ]y + LF [Y,U ]u).

The fixed points of this dynamical system are the 0-cochains x where LFx = 0 on Y
and u = (x0)|U — the harmonic extensions of u. As LF [Y, Y ] is a principal submatrix
of a positive semidefinite matrix, it is positive semidefinite; if H0(G, Y ;F) = 0, it is
positive definite. Further, imLF [Y,U ] ⊆ imLF [Y, Y ] ⊥ kerLF [Y, Y ], so dy

dt is always
orthogonal to kerLF [Y, Y ], and hence the dynamics preserve kerLF [Y, Y ]. Therefore,
without loss of generality we can consider the system restricted to imLF [Y, Y ]. That
is, write y = y⊥ + y‖, where y‖ ∈ imLF [Y, Y ] and y⊥ ∈ kerLF [Y, Y ].

We now apply the general solution to an inhomogeneous linear ODE for x‖ to
obtain

y(t) = e−tαLF [Y,Y ]y
‖
0 −

∫ t

0

e−(t−τ)αLF [Y,Y ]αLF [Y,U ]udτ

= e−tαLF [Y,Y ]y
‖
0 − α−1LF [Y, Y ]†(I − e−αLF [Y,Y ]t)αLF [Y, U ]u

= e−tαLF [Y,Y ]y
‖
0 − LF [Y, Y ]†(I − e−αLF [Y,Y ]t)LF [Y, U ]u.
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Here LF [Y, Y ]† is the Moore-Penrose pseudoinverse of LF [Y, Y ], which when restricted
to imLF [Y, Y ] is simply the inverse. As t→∞, this expression converges to

(5.3) y‖∞ = −LF [Y, Y ]†LF [Y,U ]u.

This is the minimum-norm harmonic extension of u, since any harmonic extension
satisfies LF [Y, Y ]y + LF [Y,U ]u = 0. Since y⊥0 is unchanged throughout, the limit

is therefore y∞ = y⊥0 + y
‖
∞, which clearly still satisfies the equation for harmonic

extension of u.

This result quantifies how even a few stubborn individuals can have an influence on
the opinion distribution throughout an entire social network. The opinion distribution
is kept in constant tension induced by the stubborn individuals. We can characterize
this equilibrium as the configuration minimizing total disagreement given the stubborn
agents’ opinions. That is, the harmonic extension is a minimizer of ‖δx‖2 subject to
x|U = u. If there is a global section x with x|U = u, it is clearly a harmonic extension
of u. However, harmonic extensions are not in general global sections.

6. Controlling Opinions. The analysis of stubborn individuals prompts the
notion of more intentional control of opinions over a social network. By way of merging
the notation of the previous section with that of linear controls, let U ⊂ V be a set
of user input vertices on which the controller can effect influence, and let Y ⊂ V
be a set of observables whose preferences one wants to control. We will denote by
u(t) ∈ C0(U ;F) and y(t) ∈ C0(Y ;F) data supported on U and Y respectively taking
values in the stalks of F on those respective vertex sets.

The influence of user inputs on the system is mediated through a linear transfor-
mation B : C0(G;F)→ C0(G;F) with image and coimage C0(U ;F); the observables
are viewed through C : C0(G;F) → C0(G;F) with image and coimage C0(Y ;F).
The resulting linear control system is:

(6.1)
dx

dt
= −αLFx+Bu :

dy

dt
= Cx.

Controllability of (6.1) answers the natural question of whether opinion distri-
butions on Y can be determined via manipulation of inputs on U . The system will
naturally settle on a stable opinion distribution — a global section of F . Do inputs
exist that will steer the system to an arbitrary global section?

Consider the simplified case where B is the identity map on C0(U ;F) and zero
elsewhere. In this case, we have the following result:

Theorem 6.1. If the relative cohomology H0(G,U ;F) = 0, then the system (6.1)
is stabilizable, with B the identity on C0(U ;F).

Proof. Stabilizability is equivalent to the condition that the matrix[
(−αLF − λI) B

]
be full rank for all λ with nonnegative real part (see, e.g., [33] for a deeper discussion
of this and other standard results of linear control theory). Since the eigenvalues of
−αLF are real and nonpositive, −αLF−λI is already full rank for any λ with nonzero
imaginary part or negative real part. Thus we only need to consider λ = 0, the case
of the matrix

[
−αLF B

]
. This matrix has full rank if for every x ∈ kerLF , there

exists some u ∈ imB with xTu 6= 0. In particular, this will be satisfied if no nontrivial
global section of F vanishes on U . From the definition and interpretation of relative
cohomology, this is precisely the condition that H0(G,U ;F) = 0.
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Fig. 5. Weighted reluctance to changing opinions may be modeled by extending the discourse
sheaf over an augmented graph, giving each vertex a stubborn parent who exerts influence.

This theorem implies that given an appropriate input set, we can ensure that
the dynamics converge to any global section of F . When H0(G,U ;F) = 0, every
global section is the unique harmonic extension of its restriction to U , so we need
only control u = x|U to the desired states, and the rest of the network will follow.

The dual result to Theorem 6.1 (presented without proof) is

Theorem 6.2. If the relative cohomology H0(G, Y ;F) = 0, then the system (6.1)
is detectable for C the identity on C0(Y ;F) and zero elsewhere.

Thus, by observing agents on Y we can educe any motion of the global state projected
to H0(G;F). Given both conditions we can construct an observer-controller pair
steering the system to a global section with any desired outcome as measured on Y .

Example 6.3. If G is connected and the communication structure is given by
the constant sheaf Rn, any vertex gives an input set for which the dynamics are
stabilizable. This is because there are no nonzero constant Rn-valued functions on
G that vanish at a vertex, so H0(G, {v};Rn) = 0. In terms of opinion dynamics, it
is only necessary to have arbitrary influence on a single individual in order to ensure
eventual global consensus on any given opinion — a trivial property of the constant
sheaf.

7. Weighted Reluctance. The control perspective is helpful in analyzing an-
other type of linear dynamics, where individuals are resistant to modifying their initial
opinions (but not infinitely so, as in Section 5). We model this as a feedback con-
troller attached to the original system, letting uv = αγv((x0)v − xv), where γv is an
agent-dependent reluctance parameter. The long-run opinion distribution is again a
function of harmonic extension. This can be effected by expanding the sheaf to an
augmented graph G′ as follows (see Figure 5).

Construction: Given G, augment it to a graph G′ by duplicating the vertex
set V to a copy V ′. Attach each v′ ∈ V ′ to the corresponding vertex v ∈ G, with a
single edge e′. Extend the discourse sheaf F to a sheaf F ′ on G′ by letting F ′(v′) =
F ′(e′) = F(v), where e′ is the edge between v′ and v. The restriction maps are
F ′vP e′ = F ′v′P e′ =

√
γvI. One thinks of this augmented graph as giving each agent

an additional acquaintance, their parent, who acts as a constant influence on their
opinions.

We now apply the results about dynamics with stubborn agents to F ′ on G′, with
parents as stubborn agents. For an initial condition x0 ∈ C0(G;F), extend it to G′

via x0(v′) = x0(v) and force all the agents v′ to be stubborn (in the sense of §5). The
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differential equation governing the opinion evolution is

dxv
dt

= −α(LF ′x)v

= −α((LFx)v + γv(xv − xv′))
= −α(LFx)v + αγv((x0)v − xv).

(7.1)

Applying Theorem 5.1, we see that the opinion distribution converges to the harmonic
extension of (x0)|V ′ to the rest of F ′. The stubbornness parameters γv influence how
much the initial opinions influence the limit, and hence how far from a global section
of F the limiting opinion distribution lies.

8. Learning to Lie. The notion that communication over a social network leads
to changes in opinions is a convenient idealization to which diffusion dynamics ap-
plies. Because using a discourse sheaf to model opinion dynamics makes explicit the
communication structure employed by the agents, it allow us to model changes in
that structure. Instead of opinions changing over time, one could just as well consider
evolution of expression: agents can learn to communicate differently based on the
reactions of their neighbors. Leaving aside the sociological questions of whether a
typical person in the face of opposition actually changes opinions or simply “learns
to communicate better,” we demonstrate the flexibility of the discourse sheaf model
under such settings.

Assume that each agent v is able to modify all its restriction maps FvP e (for edges
e incident to v) and is able to observe their neighbors’ translated opinions FuP exu.
If the goal of each agent is to learn how to translate their opinions so that apparent
consensus is reached, they should alter their restriction maps to remove the part of
the image that contributes to disagreement with neighbors. That is, the dynamics
should be of the form

(8.1)
d

dt
FvP e = −β(FvP exv −FuP exu)xTv ,

for some diffusion strength β > 0. These dynamics may be nicely expressed in terms
of the block rows δe of the coboundary matrix corresponding to each edge:

(8.2)
dδe
dt

= −βδexexTe ,

where xe is the vector in C0(G;F) in which all entries corresponding to vertices not
incident to e have been replaced with zero. Combining these together, we have

(8.3)
dδ

dt
= −βPδ(δxxT ),

where Pδ is the map that takes the matrix of a linear transformation C0(G;F) →
C1(G;F) and projects it to a matrix with the correct sparsity pattern to be a sheaf
coboundary matrix. That is, Pδ sets all entries for blocks corresponding to non-
incident vertex-edge pairs to zero.

Theorem 8.1. For F(t) a solution to (8.1) on the space of sheaves over G with
fixed stalks, the sheaf F = F(0) converges to F ′ = limt→∞ F(t), the nearest sheaf
such that x is a global section, where distance between F and F ′ is measured by the
squared Frobenius norm:

(8.4) d(F ,F ′) =
∑
vP e

‖FvP e −F ′vP e‖2F = ‖δ − δ′‖2F .
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Fig. 6. A constant sheaf over an edge with an initial opinion distribution that is highly discor-
dant [left] converges under diffusion of the sheaf to a nonconstant sheaf [right] in which the agent
with the more extreme negative opinion has “learned to lie” in order to come to consensus.

Proof. The 0-cochain x is a global section of F ′ precisely when, for each edge
e = u ∼ v, F ′uP exu = F ′vP exv, or equivalently, when δ′exe = 0.

The dynamics for each edge are uncoupled, as can be seen from the form of
the equation in (8.2). The differential equation for each edge is linear, given by the
operator A taking δe to δexex

T
e . This operator is positive semidefinite with respect

to the inner product 〈δe, δ′e〉 = tr(δTe δ
′
e), and its kernel is given by those δe for which

δexe = 0. Therefore, the same argument as in the proof of Theorem 4.1 shows that
the trajectory of δe converges to its orthogonal projection onto kerA with respect to
this inner product. The corresponding norm is the Frobenius norm, and hence δe
converges to the nearest δ′e as measured by this norm such that δ′exe = 0.

Since the distance (8.4) decomposes across edges, and each edge independently
satisfies this distance-minimizing property, the same is true of their combination
into a complete coboundary matrix. That is, the limiting coboundary matrix δ′ =
limt→∞ δ(t) is the minimizer of ‖δ(0)− δ′‖2F such that δ′ is a sheaf coboundary matrix
and δ′x = 0.

This proof indicates a sort of duality between the sheaf heat equation (4.1) and
the structural dynamics (8.1). Both are diffusion-like processes, adjusting parameters
to alleviate a local discrepancy.

Example 8.2. (Learning to lie) The restriction map diffusion dynamics can con-
vert the constant sheaf into a nontrivial communication structure. Start with the
constant sheaf on a graph with two vertices and a single edge as shown in Figure 6,
with a highly inconsistent 0-cochain assigning −4 to one vertex and +1 to the other.
As the restriction map dynamics progress, the discourse sheaf becomes an inconsistent
one, and the sign of one restriction map changes — the corresponding agent learns
to lie about their opinion. Note that this agent changes their expressed opinion’s
sign, but also downplays its magnitude, allowing the original opinion distribution to
become a global section.

9. Joint Opinion-Expression Diffusion. The natural culmination of this line
of reasoning is to combine the opinion diffusion (4.1) and the communication structure
diffusion (8.1). That is, evolve both the 0-cochain x and the restriction maps FvP e

according to

dx

dt
= −αδT δx

dδe
dt

= −βδexexTe .
(9.1)
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Lemma 9.1. For x, δ evolving according to (9.1), the function

(9.2) Ψ(x, δ) =
1

2
xT δT δx

satisfies Ψ(x, δ) ≥ 0 and d
dtΨ(x, δ) ≤ 0, with zero attained in both instances if and

only if δx = 0.

Proof. In (9.1), δ is considered to lie in the space of linear transformations with the
appropriate sparsity pattern to be the coboundary of a sheaf over G. That Ψ(x, δ) ≥ 0
is immediate from its definition, as is its vanishing precisely when δx = 0. The proof
of the second inequality is by direct computation:

d

dt
Ψ(x, δ) = xT δT δ

dx

dt
+ xT δT

dδ

dt
x

= −αxT δT δδT δx− βxT δTPδ(δxxT )x

= −αxT (δT δ)2x− β
∑
e

xTe δ
T
e δexex

T
e xe.

(9.3)

The first term is clearly nonpositive, and negative precisely when δx 6= 0, and the
second term is similarly negative when δexe 6= 0 for some e.

Applying LaSalle’s invariance principle to this function reveals that all limit points
of trajectories of (9.1) satisfy δx = 0. More is true: it is easy to check that (9.1) is
actually a gradient descent equation on Ψ, with the gradient defined with respect
to the inner product 〈(x, δ), (x′, δ′)〉 = 1

αx
Tx′ + 1

β

∑
e tr(δTe δ

′
e). This implies that

trajectories indeed converge to points with δx = 0. That is, trajectories converge
to points describing a sheaf F on G with coboundary map δ together with a global
section x of F .

Because the stationary points of (9.1) are not isolated, there is no global asymp-
totic stability. The set of equilibria is the set of solutions to a system of degree-2
polynomials forming a singular algebraic variety. The equilibria lying at nonsingular
points of this variety are, however, Lyapunov stable.

Theorem 9.2. The smooth stationary points of (9.1) are Lyapunov stable.

Proof. It remains to show that given a stationary point (x∗, δ∗) at which the
derivative of the map (x, δ) 7→ δx is full rank, any neighborhood of (x∗, δ∗) contains
the forward orbit of a subneighborhood. In a neighborhood of (x∗, δ∗), the set of
equilibria of (9.1) is a smooth manifold, given by the equation δx = 0. The tangent
space at this point is the kernel of the map (δ, x) 7→ δ∗x + δx∗. Meanwhile, the
linearization of (9.1) about (x∗, δ∗) is

dx

dt
= −α(δT∗ δx∗ + δT∗ δ∗x)

dδe
dt

= −β
[
δTe (x∗)e(x∗)

T
e + (δ∗)

T
e xe(x∗)

T
e

]
These are zero if and only if (x, δ) satisfy δ∗x+ δx∗ = 0, so the stationary set of the
linearization is precisely the same as the tangent space at (x∗, δ∗). Therefore, the
stationary points near (x∗, δ∗) describe a center manifold for the dynamics. Standard
results on stability of the center manifold indicate that the stability of an equilibrium
within the center-stable manifold is equivalent to its stability in the center mani-
fold [28]. Since (x∗, δ∗) is Lyapunov stable within the center manifold (because the
dynamics are trivial), it is therefore Lyapunov stable.
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The regions of highest dimension of the variety X are those where ker δ = 0 (for
most choices of G and stalk dimensions). This would seem to indicate that we should
expect most trajectories to converge to points with x = 0. However, this is not the
case.

Theorem 9.3. If one of the diagonal blocks of αδT0 δ0 − βxT0 x0 fails to be semi-
definite, the trajectory of (9.1) converges to a point (x∞, δ∞) with x∞ 6= 0.

Proof. Let M = δT δ − xxT and consider

dM

dt
=

d

dt
αδT δ − βxxT

= α[−βPδ(δxxT )T δ − βδTPδ(δxxT )]− β(−αxxT δT δ − αδT δxxT )

= −αβ[(δTPδ(xx
T δxxT ))T + δTPδ(δxx

T )] + αβ[(δT δxxT )T + δT δxxT ].

(9.4)

Note that the diagonal block of δTPδ(δxx
T ) corresponding to a vertex v is equal to

(δT δxxT )v,v, since the sparsity pattern of the relevant block row of δT is the same
as the sparsity pattern imposed by the projection P . Thus, when we restrict to the
diagonal blocks, the derivatives cancel and we have d

dtdiag(M) = 0. Therefore, if
Mv,v is indefinite at t = 0, it must be indefinite for all t. In particular, this means
that xxT cannot approach zero, since otherwise M and all of its diagonal subblocks
would approach semidefiniteness.

This condition implies that if any diagonal element of M is negative, the dynamics
converge to a nonzero x. A fortiori, if tr(M) = ‖δ‖2F − ‖x‖2 is negative, the limiting
value of x is nonzero. Thus, given any initial δ0 and x0, there exists some scaling
factor κ such that the initial condition (δ0, κx0) converges to a sheaf with a nontrivial
global section.

Other relevant quantities are controlled during the combined diffusion dynamics.

Theorem 9.4. The quantities ‖δ‖2F , ‖x‖2, ‖δx‖2, and ‖δx‖2
‖x‖2 are nonincreasing

under the evolution of (9.1).

Proof. That ‖δx‖2 is decreasing is implied by the fact that Ψ is decreasing un-
der (9.1). We evaluate the other derivatives:

d

dt
‖δ‖2F =

d

dt
tr(δT δ)

= −β tr(δTPδ(δxx
T ) + Pδ(δxx

T )T δ)

= −2β
∑
e

(xTe δ
T
e δexe)x

T
e xe ≤ 0,

(9.5)

d

dt
‖x‖2 =

d

dt
xTx

= −α(xT δT δx+ (δT δx)Tx)

= −2αxT δT δx ≤ 0.

(9.6)

Finally,

(9.7)
d

dt

‖δx‖2

‖x‖2
=
‖x‖2 d

dt‖δx‖
2 − ‖δx‖2 d

dt‖x‖
2

‖x‖4
.
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Fig. 7. A constant sheaf over an edge with an initial opinion distribution that is highly dis-
cordant [left] converges under the combined opinion-expression diffusion to a nonconstant sheaf
[right] in which both opinions and expressions have relaxed to come to consensus. Under this initial
condition, the agent on the left has learned to lie.

We know that d
dt‖δx‖

2 ≤ −αxT (δT δ)2x, so this is bounded above by

−2α‖x‖2(αxT (δT δ)2x) + 2α(xT δT δx)2

‖x‖4
= 2α

[(
xT δT δx

‖x‖2

)2

− xT (δT δ)2x

‖x‖2

]
.

Thus, ‖δx‖
2

‖x‖2 is decreasing if the inequality(
xT δT δx

‖x‖2

)2

≤ xT (δT δ)2x

‖x‖2

holds. By taking ‖x‖ = 1 and diagonalizing δT δ, we get the equivalent inequality

∑
i

λ2
ixi ≥

(∑
i

λixi

)2

for λi, xi ≥ 0,
∑
i xi = 1, which is simply Jensen’s inequality.

This last decreasing observable is the Rayleigh quotient of L = δT δ corresponding
to x. That it is decreasing means x(t) becomes a global section of F(t) at least as
quickly as it approaches zero.

Example 9.5. (Learning to lie, redux) The combined diffusion dynamics also en-
able an agent to learn to falsify opinions. Consider the same initial conditions as
before, but run the combined dynamics with α = β = 1. The sheaf and cochain
converge again to a sheaf where one agent lies about their opinion. The opinion dis-
tribution changes somewhat, but because the discrepancy between opinions is so great,
the sheaf is able to adapt more easily than the opinions themselves: see Figure 7.

10. Nonlinear Laplacians. The sheaf Laplacian is constructed from the sheaf
coboundary and its adjoint, with an implicit isomorphism between C1 and its dual
given by the standard inner product on the edge stalks. We can make this mapping
explicit, and insert a new function between the terms in order to produce nonlinear
Laplacians with new behaviors.

Let φe : F(e) → F(e) be a continuous but not-necessarily-linear map for each
edge e of G, and define Φ : C1(G;F)→ C1(G;F) by combining these edgewise maps.
The corresponding nonlinear Laplacian is LΦ

F = δTF ◦ Φ ◦ δF . Because the nonlinear
map Φ is applied edgewise, LΦ

Fx can still be computed locally in the network. Thus,
the nonlinear heat equation

(10.1)
dx

dt
= −αLΦ

Fx
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over a discourse sheaf F describes a form of networked opinion dynamics.
One way to construct a nonlinear Laplacian is by beginning with a set of edge

potential functions. The heat equation on a sheaf is gradient descent with respect
to x on the potential function Ψ(x) = 1

2‖δx‖
2 =

∑
e

1
2‖δex‖

2. We can replace this
potential function with a new function defined edgewise:

Ψ(x) =
∑
e

Ue(δex) = U(δx),

for once-differentiable edgewise potential functions Ue : F(e) → R. The gradient of
this function at a point x is ∇Ψ(x) = δT ◦ ∇U ◦ δx. This is therefore a nonlinear
sheaf Laplacian LΦ

F with Φ = ∇U . The heat equation for this nonlinear Laplacian is
precisely gradient descent on Ψ.

Analysis of the heat equation is simplified for nonlinear Laplacians constructed
from edge potentials. For instance, if the potential functions Ue are convex, Ψ serves
as a Lyapunov function, ensuring stability of the dynamics. If each Ue has a local
minimum at 0, global sections of F will be stationary points of the heat equation.
Indeed, if each Ue is radially unbounded with a single local minimum at 0, the long-
term behaviors of the linear and nonlinear heat equations agree.

Proposition 10.1. For each edge e of G, let Ue : F(e) → R be a differentiable,
radially unbounded function with a unique local minimum at 0. Trajectories of the
nonlinear heat equation

dx

dt
= −αL∇UF x

converge to the orthogonal projection of the initial condition onto H0(G;F).

Proof. First observe that dx
dt ∈ im δT and hence is always orthogonal to ker δ =

H0(G;F). Decomposing x = x‖+x⊥, where x‖ is the orthogonal projection of x onto
H0(G;F), we restrict our attention to im δT and the evolution of x⊥.

Letting Ψ(x⊥) = U(δx⊥), we have a function vanishing precisely when δx⊥ = 0,
which holds precisely when x⊥ = 0. Further,

dΨ

dt
= 〈∇Ψ(x⊥),

dx⊥

dt
〉 = 〈L∇UF x⊥,−αL∇UF x⊥〉 ≤ 0,

with equality precisely when L∇UF x⊥ = 0. Because U is radially unbounded and has a
unique local minimum at 0, ∇U vanishes only at 0, and hence L∇UF x⊥ = 0 if and only
if x⊥ = 0. Thus dΨ

dt vanishes only at the origin and is therefore a Lyapunov function for
the nonlinear heat equation restricted to im δT . Radial unboundedness of U implies
radial unboundedness of Ψ and therefore the origin is globally asymptotically stable,
meaning x⊥ → 0. Therefore, limt→∞ x(t) = x‖(0).

11. Bounded Confidence. Nonlinear Laplacian dynamics (and in particular
edge potential dynamics) can be used to extend the popular bounded confidence opin-
ion dynamics to discourse sheaves. The central idea behind bounded confidence opin-
ion dynamics is that individuals only have confidence in the opinions of neighbors that
are sufficiently similar to their own, and thus only take these opinions into account
when updating. The reigning discrete-time model of bounded confidence dynamics is
based on that of Hegselmann and Krause [25], with extensions to multidimensional
opinions. In this model, each agent has a threshold D, and only pays heed to opin-
ions of neighbors that are within distance D of their own opinion. Continuous-time
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versions of this model have been analyzed, both with sharp discontinuous thresholds
[6, 9] as well as smooth transitions between confidence and no-confidence [10].

We will here discuss a continuous-time version of bounded confidence dynamics
for sheaves, using smooth threshold functions. These will be represented in terms
of edgewise potential functions. Given a discourse sheaf F on a graph G, for each
edge e of G choose a threshold De and a differentiable function ψe : [0,∞)→ R such
that ψ′e(y) = 0 for y ≥ De and ψ′e(y) > 0 for y < De. The edge potential function
Ue : F(e)→ R is then given by Ue(ye) = ψe(‖ye‖2). The gradient of this potential is
∇Ue(ye) = ψ′e(‖ye‖2)ye, and therefore the associated nonlinear Laplacian is given by

(11.1) L∇UF x = δT diag(ψ′e(‖δex‖2))δx.

This formula can be written vertexwise as

(11.2) (L∇UF x)v =
∑
u,vP e

FTvP eψ
′
e(‖FvP exv −FuP exu‖2)(FvP exv −FuP exu).

In comparison with the formula for the standard sheaf Laplacian, there is a nonlinear
scaling factor depending on the discrepancy over each edge. This nonlinear Laplacian
L∇UF can be used to generate bounded confidence dynamics.

Theorem 11.1. Suppose that Ue(ye) = ψe(‖ye‖2) for some ψe : [0,∞)→ R with
ψ′e(y) = 0 for y ≥ De and ψ′e(y) > 0 for y < De. Then an opinion distribution
x ∈ C0(G;F) is harmonic with respect to L∇UF if and only if for every edge e = u ∼ v
with FvP exv 6= FuP exu, ‖FvP exv −FuP exu‖2 ≥ De.

Proof. If x ∈ H0(G;F), then δx = 0, and since ∇Ue(0) = 0, δT∇U(δx) = δT 0 =
0. More generally, ∇Ue(δx)e = 0 whenever either (δx)e = 0 or ‖(δx)e‖2 ≥ De. But
(δx)e = FvP exv −FuP exu.

Conversely, if L∇UF (x) = 0, then ∇U(δx) ∈ ker δT ; equivalently, ∇U(δx) is or-
thogonal to im δ. In particular, 〈∇U(δx), δx〉 must be zero. Letting y = δx, we
have

(11.3) 〈∇U(y), y〉 =
∑
e

〈∇Ue(ye), ye〉 =
∑
e

〈ψ′e(‖ye‖2)ye, ye〉.

These terms are all nonnegative, and 〈ψ′e(‖ye‖2)ye, ye〉 = 0 if and only if either ye = 0
or ψ′e(‖ye‖2) = 0. The first condition holds precisely when (δx)e = 0, and the second
holds precisely when ‖(δx)e‖2 ≥ De.

Naturally, one constructs the bounded confidence Laplacian to study the corre-
sponding diffusion dynamics

(11.4)
dx

dt
= −L∇UF (x).

Theorem 11.1 identifies the equilibria of these dynamics. Global sections of F are still
equilibria, but there are more. Given x ∈ C0(G;F), we construct a subgraph Gx of
G and a sheaf Fx on Gx as follows: Gx has the same vertices as G, but only contains
the edges e where ‖(δx)e‖ < De. The sheaf Fx is the same as F but with the data
for edges not in Gx removed. So a 0-cochain x ∈ C0(G;F) is a fixed point for (11.4)
if and only if it is a global section of Fx. We denote the subset of C0(G;F) for which
the corresponding sheaf is Fx by Kx. That is,

(11.5) Kx = {x ∈ C0(G;F) : ‖δex‖2 < De for e ∈ Gx, ‖δex‖2 ≥ De for e /∈ Gx}.
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Suppose that x0 is a fixed point with ‖(δx0)e‖2 6= De for all edges e. Sufficiently close
to x0, the dynamics behave like the standard diffusion dynamics on Fx0

.

Theorem 11.2. Let x0 be a fixed point of (11.4) lying in the interior of Kx0—
that is, with ‖(δx0)e‖ > De for all e /∈ Gx0

. There exists a neighborhood W of x0

such that for every initial condition x ∈ W , the trajectory of (11.4) converges to the
nearest global section of Fx0

.

Proof. Let W be a neighborhood of x0 contained in Kx0 satisfying:
1. If x ∈W , its orthogonal projection x‖ onto H0(Gx0

;Fx0
) is in W .

2. If x ∈ W is not a fixed point with x = x‖ + x⊥, then ‖x⊥‖ < ‖δex‖‖2−De

2‖δex‖‖‖δe‖
for

all e /∈ Gx0
.

3. If x = x‖ + x⊥ ∈W is not a fixed point, then ‖x⊥‖2 < De

‖δe‖2 for all e ∈ Gx0
.

Such a neighborhood exists by continuity of the linear maps δe and because we can
choose arbitrarily small tubular neighborhoods around the set of fixed points.

Consider x = x‖ + x⊥ ∈ W . We will show that x converges to x‖, which is
in U by condition (1). Note that as long as x ∈ Kx0

, d
dtx
‖ = 0. Similarly, for

x ∈ Kx0 , d
dt

1
2‖x
⊥‖2 = 〈x⊥, ddtx

⊥〉 = 〈x⊥,−δT∇U(δx⊥)〉 = −〈δx⊥,∇U(δx⊥)〉 ≤ 0, by
the argument in the proof of Theorem 11.1. This is zero only if x⊥ = 0, and hence
‖x⊥‖2 is strictly decreasing as long as it is nonzero and x ∈ Kx0

. In particular, for
any initial condition x ∈ W with x⊥ 6= 0 there is some maximal time interval [0, T )
on which d

dt‖x
⊥‖ < 0 is strictly decreasing.

Combining this with (2) and (3) above reveals that on this time interval, for every
e /∈ Gx0 ,

‖δex‖2 ≥ ‖δex‖‖2 − 2‖δex⊥‖‖δex‖‖
≥ ‖δex‖‖2 − 2‖δe‖‖x⊥‖‖δex‖‖

> ‖(δx‖)e‖2 − 2‖δe‖‖δex‖‖
‖δex‖‖2 −De

2‖δex‖‖‖δe‖
= De

by condition (2). Similarly, for e ∈ Gx0
,

‖(δx)e‖2 = ‖(δx⊥)e‖2 ≤ ‖δe‖2‖x⊥‖2 < De

by condition (3). Since these relations hold at time t = 0 and ‖x⊥‖ is decreasing,
they hold for all t ∈ [0, T ) as well. This ensures that x remains in Kx0

and does not
approach the boundary on this interval. If T is finite, we may thus conclude that
d
dt‖x

⊥‖ < 0 at t = T as well, so it must be that that T =∞. Thus x remains in Kx0

and ‖x⊥‖ is strictly decreasing for all time.
It remains to show that trajectories converge: that x⊥ → 0. This happens because

Ψx0(x⊥) =
∑
e∈Gx0

Ue(δex
⊥) is strictly decreasing along trajectories and vanishes

precisely when x⊥ = 0.

12. Antagonistic Dynamics. One may wish to model certain agent pairs who,
rather than attempting to move toward mutual consensus, instead try to increase
the distance between their expressed opinions. Such a dynamical structure might
correspond to relationships of distrust or enmity. We will call such a relationship a
negative edge and partition the edge set of the graph G into negative edges, E−, and
complementary positive edges E+.

One way to model relationships over negative edges in a discourse sheaf is to
change the sign of one restriction map on each negative edge. Instead of a tactful
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lie, this might be interpreted as an “agreement to disagree” between the neighbors,
making a stable pair of opinions one where the expressed opinions are the same in
magnitude but opposite in sign. In the case where the discourse sheaf is simply a
constant sheaf, this is essentially the approach taken in [2, 3].

A better approach is to leave the discourse sheaf untouched and modify the dy-
namics appropriately. Let E− be the set of negative links between agents, and E+ its
complement, the set of positive links. We define edge potential functions associated
to this signing:

Ue(y) =

{
‖y‖2 e ∈ E+

−‖y‖2 e ∈ E−
.

The corresponding nonlinear Laplacian L∇UF describes dynamics where agents attempt
to move toward consensus as quickly as possible over positive edges and away from
consensus as quickly as possible over negative edges. Let S : C1(G;F) → C1(G;F)
be the block diagonal matrix whose blocks corresponding to positive edges are I and
whose blocks corresponding to negative edges are −I. The nonlinear Laplacian for
this edge potential is the matrix LSF = δTSδ, so it is in fact a linear operator.1 These
dynamics are more akin to those considered in [4].

The kernel of LSF contains H0(G;F), but may be larger. Further, this signed
sheaf Laplacian is not necessarily positive semidefinite, so its corresponding diffusion
dynamics may be unstable. One simple situation in which this happens is as follows:

Proposition 12.1. Suppose E− is a cutset of G, dividing the graph into sub-
graphs G0 and G1. If the natural map H0(G,G1;F) → H0(G0;F) is not surjective
— that is, if there exists a local section on G0 which does not extend by zero to a
global section of G — then LSF is indefinite.

Proof. Take some nonzero x ∈ H0(G0;F) which is not in the image of this map.
Extending x by zero to the rest of G, we have δex 6= 0 for some e ∈ E−, but δex = 0
for all e ∈ E+. Thus, 〈x, LSFx〉 =

∑
e∈E−〈δex,−δex〉. This is negative because there

is at least one nonzero term.

For the case of the constant sheaf on G, the relevant map is never surjective, so a
graph with a cutset of negative edges always has an indefinite signed Laplacian, and
hence unstable opinion dynamics.

13. Conclusions. This work introduced a novel and compelling ensemble of
techniques from cellular sheaves, sheaf cohomology, and sheaf Laplacians, to model
and analyze opinion dynamics over networks. The increase in mathematical sophisti-
cation comes with an increase in expressiveness of the model: private opinions, person-
alized expressions of opinions, evolution of communication structures, stubbornness,
obfuscation, and bounded confidence are all easily expressed using discourse sheaves
and sheaf diffusion dynamics. Despite this, there is no increase in difficulty of com-
putation or analysis. The language of harmonic extension converts subtle solvability
conditions to simple linear-algebraic cohomology computations. Despite the impos-
ing terminology, sheaf cohomology is a concise and computable tool for determining
feasibility of solving problems of existence, extension, approximation, controllability,
and observability on sheaf dynamics.

The diffusive dynamics studied here have been linear or near-linear. Deeper analy-
sis of the nonlinear dynamical systems (9.1) and (11.4) is needed, as well as the many

1As is common in mathematics, “nonlinear” here really means “not-necessarily-linear.”
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other possible extensions. These include incorporation of probabilistic elements or
including multi-agent interactions using sheaves on simplicial complexes.

Since they are defined in abstract structural terms, sheaf dynamics are applicable
to more than simply opinion dynamics. This paper may be regarded as an introduction
to the dynamics of cellular sheaves as a broad generalization of network dynamics,
with social networks and opinion dynamics serving as a running example. Other
examples of networked dynamics effected by local evolution operators on rich data
structures may be found in, e.g., neuroscience and game theory, at least. For the
sake of accessibility, much of the language and techniques of sheaf theory and sheaf
cohomology have been excised from this paper. A full incorporation of sheaf-theoretic
operations would increase the precision, concision, and generality of this work.
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