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Topological localization via signals of opportunity
Michael Robinson(1), Member, IEEE, Robert Ghrist(2)

Abstract—We consider the problems of localization, disam-
biguation, and mapping in a domain filled with signals-of-
opportunity generated by transmitters. One or more (static or
mobile) receivers utilize these signals and from them characterize
the domain, localize, disambiguate, etc. The tools we develop are
topological in nature, and rely on interpreting the problem as
one of embedding the domain into a sufficiently high-dimensional
space of signals via a signal profile function. Varying kinds of
signal processing (TOA, TDOA, DOA, etc.) and discretization are
addressed. Finally, we describe experiments that demonstrate the
feasibility of these ideas in practice.

Index Terms—sensor networks, opportunistic signals, mapping,
localization

I. INTRODUCTION

THIS article examines problems associated with local-
ization, disambiguation, and mapping via ambient and

uncontrolled signal sources of opportunity. By localization
we mean an unambiguous, robust determination of position of
receivers, transmitters, or other features of interest within an
environment. We address a general setting in which the model
of the environment is measureable up to topological features,
and may lack a metric or absolute coordinate system.

We show that solving topological versions of localization
problems is largely a matter of collecting a large enough set
of signals that vary smoothly within the environment. We
give precise theoretical guarantees on the number of signals
required to ensure that these localization problems can be
solved, as well as simulation and experimental demonstrations
of its efficacy. Most other approaches aim for geometric
localization, that is localization with respect to a particular
background metric structure on the environment. In contrast,
it should be noted that we will only require the received signals
to vary smoothly as a receiver is moved within the environ-
ment, and the signals are unconstrained otherwise. While the
received signals may arise from direct-path measurements of
constant-speed waves, this restriction is strictly unnecessary.
Complicated positional dependence of the signals presents
no obstacle to our theory, so signals with varying speeds of
propagation or multipath can be exploited as special cases.

We show how this framework also detects coarse features
of the environment itself, permitting a form of topological
mapping. We consider the case in which independent mo-
bile sensors collect relatively coarse signal data from several
transmitters, perhaps to perform inference or reconstruction
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a posteriori. We are motivated by localization in minimal-
sensing scenarios with a general lack of reliable geometric
information, as exemplified in (1) underground or underwater
operations, (2) multistatic radar, or (3) adversarial or covert op-
erations. (In the case of covert operations, aquiring sufficient-
quality geometric data may be feasible but undesirable if it
requires active sensing or excessive communication.) We begin
with a continuum approximation to the problem, develop the
appropriate topological tools in this setting, and then validate
our assertions in simulation and experiment.

A. An elementary example

Consider an experiment with a single receiver and N
transmitters with fixed, but unknown positions. The receiver is
confined to lie on a compact connected line segment D ⊂ R,
and the receivers are located in R. The transmitters each emit a
single, uniquely coded pulse that travels to the receiver, where
its signal strength can be measured by a receiver when placed
at any location in D, and is stored for later reference. We do
not assume synchronization of the transmitters and receiver
beyond what is necessary to make this measurement, but do
assume that the receiver can discriminate between different
transmitters’ signals. Therefore, for a given receiver location,
a total of N signal strength measurements are taken (one
for each transmitter). The experiment is repeated for each
receiver location of interest, yielding a vector of received
signal strengths for each receiver position.

Our primary question is one of ambiguities: does the set
of signal strengths uniquely determine the position of the
receiver? This question can be answered in the affirmative
by considering the signal profile mapping P : D → RN
that records the signal strength of the N (received, identified)
transmitter pulses. Clearly, this map P is continuous, and a
generic perturbation of this map embeds the interval D into
the “signals space” RN for N > 2. Thus, a generic choice of
the signal profile mapping P is generically injective, implying
unique channel response and the feasibility of localization in
D via signal strength. More strongly, the continuity of such
a map indicates that there is underlying robustness: nearby
points in the signals space correspond to nearby points in D.

This observation is greatly generalizable to more arbitrary
domains D, encoding both physical and temporal data. We
demonstrate by theory in §?? and experiment in §?? that not
only is the resulting signal profile map associated to signal
strength injective, it also preserves topological features (holes)
in the domain.

In addition, one may modify the signals space to record
different aspects of signals received from the transmitters. A
key insight of this paper is that replacing signal strength with
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any reasonable transmitter signal space S and demodulation
Φ : S → R to a received signals space of sufficient dimension
preserves the ability to localize: the injectivity of the induced
SIGNAL PROFILE MAP: P : D → R depends only on the
dimension of the relevant spaces.

B. Statement of results

We assume a compact domain D for receivers and a generic
(to be specified carefully) set of transmitters providing a
signal profile as per the assumptions of §??. Under these
assumptions:

1) We prove a sufficient condition for receiver localization
based on opportunistic signals as a function of the num-
ber and stable coverage of transmitters. This Signals Em-
bedding Theorem is independent of the signal waveform,
downstream processing, and transmitter identification.
This permits fusion of multiple signal types.

2) Given a discretization of the signals into geometrically
small cells, we prove that preimages of these cells
localize the receiver up to small cells. The diameters
of these cells tend to zero as the partition of the signal
domain is refined.

3) We verify our results computationally and experimen-
tally in the context of acoutics. This demonstrates con-
clusively the feasibility of implementing these results
in sensing contexts. Indeed, the equipment used for our
experiment, though far from sufficient for the purpose of
SONAR ranging or imaging, performs well for the task
of detecting a change in the topology of the domain and
validating our assumptions about the signal profile. Our
experimental results also indicate the amount of signal
corruption that such a localization system can tolerate.

We emphasize that, as the methods employed are topo-
logical, the inferences possible are likewise topological, as
opposed to rigidly geometric. Changes in the topology of a
domain over time (How many buildings/obstacles are present?
Is the window open?) are often important.

C. Related work

There are many applications in which the signal sources
are either unknown or uncontrolled, and yet their localizaton
within the environment is still important. Indeed, in contrast
to the problem outlined earlier, one can use a fixed network
of receivers to localize a transmitter. One of the most direct
applications of this idea is the World-Wide Lightning Local-
ization Network [?], which locates lightning strikes (unknown
transmitters) on the earth to within a few kilometers. This
system uses a collection of radio sensors distributed on the
earth’s surface to correlate lightning strike arrival times. That
such a distributed network can perform localization tasks under
a variety of error models has been more extensively addressed
in [?], [?].

Applications of opportunistic remote sensing are copious,
as it is advantageous to exploit existing signal sources in
the environment rather than create additional ones. Knowing
a source’s position, power level, and waveform can greatly

expedite its exploitation. Even in the best situation, in which
the source and receiver locations are known, the required
processing can be complicated [?]. Many of these algorithms
consist of lifting traditional radar processing algorithms into a
more general framework, such as Fourier transform methods
[?], [?], time reversal [?], [?], equalization [?], [?], or Green’s
function approaches [?], [?].

Most experimental applications of opportunistic sensing in
radar have focused on the use of large, publicly-recorded
signal sources, such as digital broadcasters [?], [?], [?], [?],
[?]. When such sources are not available, researchers have
turned to the development of elaborate receivers with highly
directive, steerable antennae [?]. We take a different approach,
focusing on simple, inexpensive acoustic sounders that permit
controlled experiments to be run in a laboratory setting.

These existing solutions suffer from a number of inherent
limitations. Most evidently, they require intimate knowledge
of source or receiver location and configuration. Additionally,
they cannot reliably handle multipath (reflections, refractions,
or diffractions of signals) without generating inconsistent
results. Decontamination of multipath signals from a single
additional scatterer was introduced in [?] and [?], with the
definite understanding that this is a very limited case. More
substantial multipath has the added benefit that if it can be cor-
rectly characterized, it can provide additional illumination for
obstructed targets. When the multipath-generating scatterers
are known, a filtered backprojection approach can be effective
[?], [?], [?].

In contrast to these methods, our theory is essentially
insensitive to multipath. Although topologically-motivated al-
gorithms for imaging have yet to be developed, the theory
described in this article provides sufficient conditions for a
target’s position to have a unique signal response. Questions
of whether, say target paths have crossed, can be treated
within our framework with relative ease. The requirements
for this to succeed are simply that enough smoothly varying
signal measurements can be made over the domain of interest,
which is satisfied by signals in multipath settings. However,
the reader is urged caution: even though a target may be local-
ized, the resulting data may prove difficult to interpret, since
embeddings of high-dimensional manifolds can be arbitrarily
complicated.

Indeed, estimation of the dimension [?], [?] of the environ-
ment from this kind of signal space mapping is an interesting
problem, though it appears that there is no treatment of our
particular mapping in the literature. Once the dimension is
known, a number of algorithms related to nonlinear compres-
sive sensing [?], [?], [?], [?], [?], [?] could play a useful
role in our analysis. In particular, they suggest that a random
projection of the data to the appropriate dimension can result
in an accurate geometric picture of the signal space. We exploit
these random projections in §?? in order to exhibit data from
our experiments. However, it is worth cautioning the reader
that geometric information may be irreversibly lost depending
on the sensing modality. In this case, an approach like that
of [?] permits detection of certain features without complete
recovery of the environment.

Since projections tend to be rather limiting, one might also
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suspect that manifold learning approaches, such as [?], [?], [?],
[?] could provide an algorithmic basis on which to exploit the
theory presented in this article. However, the performance of
manifold learning algorithms tends to degrade in the presence
of substantial noise (as is present in our experiment) and when
there are singularities in the signal profile. Despite this, we
suspect manifold learning to be a potentially valuable source
of algorithms for inverting signal profiles, and active research
in this area is continuing.

Our approach differs from the methods discussed previously
in several important ways:

1) Our emphasis is on recovering topological features of
the environment via signals of opportunity. To this end,
we validate the experimental results presented in this
article by computing topological invariants (persistent
homology [?], [?]) of the domain as represented in the
signal space and comparing them against ground truth.

2) We do not expect source or receiver locations to be
known, and so focus on algorithms that are specifically
non-coherent. As a benefit, algorithms developed in this
framework (such as [?]) will be capable of working
against poorer quality data than otherwise tolerable.

3) Our methods are robust with respect to discontinuities
in received signals (near the minimum detectible signal
levels) and also with respect to multipath contamination
of the received signals.

4) Our framework addresses a wide array of known sensor
modalities, such as those based on signal strength, time
difference of arrival, direction of arrival, and more;
mixed modalities are fully supported.

Finally, we address concerns about the feasibility of our
approach by presenting experimental results that validate our
signal model and the correctness of the resulting signal space
embeddings.

II. SIGNALS AND SIGNAL PROFILES

In this section, we work in a continuum limit that permits a
receiver to be located at any point in space: we will later
sample this continuum by a network of fixed (or perhaps
mobile) receivers in our discussion of experimental results in
§??. All receivers reside in a compact domain D which is a
manifold with boundary and (perhaps) corners (see Appendix
for definitions from differential topology). It is common to
visualize D as the physical workspace in which the transmit-
ters and receivers reside, but this is not strictly necessary. For
example, receivers with directional bias can be topologized
as a space of cones in a tangent bundle; or, in the case
where mobile receivers travel through a domain A ⊂ R2, the
appropriate D may be the product D = A × [0, T ] with the
time interval.

A. Spaces and signals

We give precise descriptions of the signal modalities that
commonly arise in applications, though other settings can
certainly be imagined. Let the environment be represented
by a Riemannian manifold D with boundary and corners,
whose global topological and geometric structure is unknown

to both transmitters and receivers. Represent the received
signal strength from a single transmitter as the solution u to
the following forced wave equation

c2∆u− ∂2u

∂t2
= δ(t− t∗, x− x∗), u|∂D = 0, (1)

where c may vary smoothly over D. In this case, t∗ and x∗
represent the transmitter time and location of transmission,
respectively, both of which are unknown.

1) TOA: The time of arrival (TOA) for this transmitter is
defined to be the signal profile function D → R given
by x 7→ inf{t|u(t, x) 6= 0}. This function is continuous
and smooth except for a number of codimension-1
singularities [?], though it might not be defined on
some portions of the domain. Accordingly, we assign
the distinguished basepoint ⊥ to the signal profile at
such points. This makes the signal space associated to
the TOA of one transmitter into the disjoint union Rt⊥.
If instead of one transmitter, there are N transmitters,
the resulting signals space is (R t ⊥)N . Such a signal
profile models the situation where the receiver can
discriminate between signals from different transmitters,
but these measurements made at the receiver may not be
synchronized.

2) TDOA: It is often the case that the receiver has a single
consistent clock. However, since the absolute timing
of the transmissions is unknown, one really has the
quotient of the vector of the TOA signals (one for each
transmitter, as above) by the action of time translation
t 7→ t + T . We call this situation Time Difference of
Arrival (TDOA).

3) Strength: Supposing the transmitted waveform to be
r = r(t), we define the signal strength associated
with a single transmitter by the function S(x) =∫
u(s, x)r(s)ds. If r is smooth, then the resulting signal

strength is a smooth function on an open subdomain of
D.

4) DOA: If the receiver is equipped with a directional
antenna, direction of arrival (DOA), can be extracted.
Formally, it is given by the gradient of signal strength
∇S(x)
‖∇S(x)‖ . Observe that this can have codimension-1
singularities where the direction of arrival is undefined.
Assign ⊥ to the DOA at these points.

5) Doppler: Relative velocity can be measured if a single
transmitter emits a pulse train while in motion, so that
the source term in (??) takes the form

∑M−1
k=0 δ(t −

tk, x − xk). Assuming that the pulses are far enough
apart so that the receiver can discriminate between the
echos associated to different pulses, and that the pulse
repetition interval is known, the receiver can measure
TDOA with this single transmitter. Observe that if the
transmitter is moving toward the receiver, the measured
differences between arrival times are decreased relative
to those from a fixed transmitter.

We propose a unifying framework that considers each of the
above as a special case. Consider, therefore, each transmitter to
have an associated signals space Si. We encode limited signal
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range by means of a distinguished disjoint failstate basepoint
⊥ which connotes failure to receive or decode this signal.

B. The transmission and signal profiles

The connection between the receiver domain D and the
spaces of signals induced by signal transmission and reception
takes the form of mappings. We differentiate between the
transmitted signals readable by a receiver and the information
that a receiver retains after signal processing. For example,
in TDOA, individual transmitter signals are detected by the
receiver; however, only the time-difference between incoming
signals is retained as received signal data. We encode this
difference of readable and retained signals by means of a
quotient map Φ : S → R between the space of transmitted
signals S and received or retained signals R. A receiver at
a point in D receives a transmission signal by means of a
transmission profile map T : D → S and an induced received
signal profile map P : D → R, where P = Φ ◦ T .

D T //

P ��?
??

??
??

? S

Φ

��

=
∏
i(Si t ⊥)

R

. (2)

C. Assumptions

For the remainder of the paper, we enforce the following
axiomatic characterization of signal profiles:

1) D is a manifold with boundary and corners.
2) The i-th transmitter emits a signal which is reliably

readable by a receiver in D on a STABLE DOMAIN
Ui ⊂ D, a compact codimension-0 submanifold with
corners.

3) The i-th transmitter determines a smooth TRANSMIS-
SION MAP Ti ∈ C∞(Ui,Si) taking values in a TRANS-
MISSION SIGNAL SPACE Si. This space Si might be 1-
dimensional, as in the case of the example in §??. As
will be detailed in examples in this article, many other
choices of Si are possible.

4) The i-th transmission map extends to Ti : D → Si t ⊥
and evaluates to ⊥ on points outside of Ui.

5) The individual signal maps assemble into the TRANS-
MISSION PROFILE, the map T : D → S =

∏
i(Si t ⊥)

given by the product of the Ti maps.
6) The SIGNAL PROFILE P : D → R is the postcomposi-

tion of the transmission profile P with a quotient map
Φ : S → R, where R is a disjoint union of manifolds
and Φ is a submersion (the derivative dΦ is onto at each
point of S).

As an example, for TDOA with infinite broadcast range
(Ui = D for 1 ≤ i ≤ N ), the quotient map Φ from the
transmission signal space S = RN to the received time-
difference space R = RN−1 is a linear projection map (time-
difference) with dΦ of constant rank N − 1 everywhere.

III. THE SIGNALS EMBEDDING THEOREM

We demonstrate that for sufficiently many generic trans-
mission signals, each point in D has a unique signal profile.

The critical resource is the number (and dimension) of signals
received relative to dim D. The collection of stable domains
for the transmitters is denoted U = {Ui}N1 . It will be assumed
that U is a cover for D, meaning that the union of the interiors
of the Ui sets contains D. We characterize the amount of
information needed to uniquely localize receivers via signals
in terms of a depth of the collection of stable domains U .

Definition 1. Given a domain D and a cover U of D by sets
U = {Uα}, the DEPTH of the cover, dep U , is the minimal
n ∈ N such that every point x ∈ D lies in at least n distinct
elements of U .

Definition 2. Consider the localization Tx : Dx → Sx of T
taking a neighborhood Dx of x ∈ D to the subspace Sx ⊆ S,
which is the product of the Si for which x lies in the interior
of Ui. Define the P -WEIGHTED DEPTH dep P of the cover
U to be the minimal rank of the derivatives dΦ|Sx at Tx(x)
over all x:

dep P = min
x∈D
{rank (dΦ|Sx)(Tx(x))} . (3)

The received signal profile P may or may not be injec-
tive. When it is not, receivers at different locations record
identical signals. It may be the case that such ambiguity is an
extreme coincidence, and a small perturbation to the individual
signals removes the ambiguity in P . On the other hand, non-
uniqueness of signal profiles may be a persistent feature of the
environment: although a perturbation may alter signal values at
two specific receiver locations, nearby receiver locations will,
after the perturbation, have identical signals. Our principal
result specifies the degree of possible ambiguity.

Theorem 3 (Signals Embedding Theorem). Let P : D → R
be a received signal profile with stable domains U = {Ui}N1
satisfying the assumptions of §??. For generic transmitters —
specifically, for individual transmission signal maps Ti open
and dense in C∞(Ui,Si) — the set of points in D on which
P is non-injective is of dimension

dim {x ∈ D : P(x) = P(y) for some y 6= x}
≤ 2 dim D − dep P.

Proof: Begin with the following assumptions: (1) all
transmissions are of unbounded extent (Ui = D for all i),
so that S =

∏
i Si; and (2) the quotient map Φ is the identity,

so that P : D → R = S. In this case, the signal profile P :
D → R is globally smooth and dep P = dim S. The result
flows from the following version of the Whitney Embedding
Theorem. A generic perturbation of the transmission signal
maps Ti is equivalent to a generic perturbation of the received
signal profile P , since the topologies on C∞(D,

∏
i Si) and∏

i C
∞(D,Si) are equivalent [?]. Consider the configuration

space,

C2D = D ×D −∆D

∆D = {(x, y) ∈ D ×D : x = y}

of two distinct points on D. This is a manifold (with corners,
as per D) of dimension 2 dim D. The graph of the signal
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profile P induces a map on the configuration space:

C2P : C2D → C2D × S × S
: (x, y) 7→ (x, y,P(x),P(y)).

The set of points on which P is non-injective is precisely
(C2P)−1(C2D × ∆S), where ∆S ⊂ S × S is the diagonal.
According to the multi-jet transversality theorem, cf. [?, Thm.
4.13], generic perturbations of P induce generic perturbations
of C2P (since C2P is the 2-fold 0-jet of P). Thus, from
transversality and the inverse mapping theorem, the generic
dimension of the non-injective set equals:

dim C2D + dim C2D ×∆S − dim C2D × S × S
= 2 dim D + 2 dim D + dim S − (2 dim D + 2 dim S)

= 2 dim D − dim S = 2 dim D − dep P.

The transversality theorems invoked — both the multi-jet
transversality and inverse mapping theorems — are usually
stated for maps between smooth manifolds without boundary;
however, they apply also in the case of a manifold with corners
[?]. For a compact domain D, as is here the case, the stronger
conclusion of open, dense instead of generic holds [?, Prop.
5.8]. This completes the proof for the case Ui = D for all i
and Φ = Id.

Next, relax the assumptions on the quotient map Φ : S → R
from being an identity to being a submersion — the derivative
dΦ is everywhere of full rank equal to dim R = dep P . Then,
following the initial case, we wish to perform perturbations
in the transmission signals C∞(D, Ui), while controlling the
injectivity of Φ ◦ T . The non-injective set of P equals the
inverse image

(C2T )−1
(
C2D × (Φ× Φ)−1(∆R)

)
,

where ∆R ⊂ R ×R is the diagonal. As Φ is a submersion,
the inverse image of ∆R under the product map Φ× Φ is of
dimension 2 dim S − dim R. Thus, from transversality and
the inverse mapping theorem, the generic dimension of the
non-injective set equals:

= 2 dim D + (2 dim D + 2 dim S − dim R)

−(2 dim D + 2 dim S)

= 2 dim D − dim R = 2 dim D − dep P.

This completes the proof in the case of globally-received
signals Ui = D.

Finally, we relax to limited range signals. Assume a cover
U = {Ui}N1 of D of stable domains for transmission signal re-
ception. The intersection lattice of U consists of all nonempty
intersections of elements of U . Let V denote the collection
of closures of the elements of this intersection lattice. Since
V is again a finite cover of D by compact codimension-0
submanifolds of D with corners. For convenience, use a multi-
index J ∈ {±1}N for V = {VJ} encoded so that

VJ = closure

( ⋂
Ji=+1

Ui ∩
⋂

Jk=−1

(D − Uk)

)
.

Restricting T to a (nonempty) VJ , yields a smooth map
TJ : VJ →

∏
Ji=+1 Si (the cross product with the fail

states is ignored). By definition of the P-weighted depth, the
rank of dΦ on the image of the interior of VJ is at least
dep P . Thus, as per the previous case, for an open dense
set of transmission signal maps, the dimension of the non-
injective set of the restriction of P to VJ is bounded above
by 2 dim D− dep P . Repeating the argument for each multi-
index J and taking the finite intersection of the resulting open
dense sets of transmission signal maps completes the proof.

IV. COROLLARIES

The Signals Embedding Theorem provides simple criteria
for the signal depth dep P required to ensure a generic
injection into the received signals space. As is typical useage,
if the dimension of the self-intersection set of P is negative,
then P is understood to be one-to-one. Its image in the
received signals space R is therefore a topologically faithful
image of D, partitioned according to U . (This important point
plays a role in our experiments, as we can detect global
topological features in the image of D under P .) Similarly,
if the self-intersection set of P has dimension zero, then point
ambiguities may persist in the image of D under P .

A. Depth criteria for localization

In many instances, depth criteria for unique channel re-
sponse is a function of the depth of the cover U by stable
signal domains. One simply needs to consider the signal
models given in §??.

Corollary 4. A generic TOA or signal strength profile is
injective whenever dep U > 2 dim D.

Proof: In the case of TOA or signal strength reception,
each signal space Si = R, Φ = Id, and dep P = dep U . From
Theorem ??, the subset of D on which P is generically non-
injective is of negative dimension — hence empty — when
dep U > 2 dim D.

This implies that a receiver can be localized to a unique
position in a planar domain D using only a sequence of five
or more locally stable TOA or strength readings from generic
transmitters. For TDOA, six signals are required to achieve
localization:

Corollary 5. A generic TDOA signal profile is injective
whenever dep U > 2 dim D + 1.

Proof: Each Si = R and the reduction map Φ : S → R is
a submersion of rank defect one; hence dep P = dep U − 1.

One should contrast this result with the more familiar
triangulation methods in use today that rely on geometric
(rather than topological) data. For instance, GPS uses a TDOA
method to give the precise geometric location of a receiver.
Since reliable measurements can be made, only 4 satellite
transmitters are required to perform the task. However, GPS
suffers from multipath and ionospheric instabilities which
compromise the quality of the measurements it uses. Corol-
lary ?? indicates that not more than 8 satellites are needed
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to localize the receiver even in the face of these deleterious
effects.

DOA has a more dramatic effect on required signal depths.

Corollary 6. A generic DOA signal profile is injective when-
ever

dep U >
2 dim D

dim D − 1
. (4)

Proof: Each Si = SdimD−1 and Φ = Id. Thus, for
injectivity,

2 dim D < dep P = (dep U )(dim SdimD−1).

Remark 7. Note that Corollary ?? implies that
1) DOA localization is impossible when dim D = 1;
2) for a planar domain, there is no difference between DOA

and TOA in terms of signal cover depth required; and
3) for domains of dimension greater than three, the signal

depth required for DOA equals three, independent of
dimension.

B. Time-dependent systems

1) Pulses: The simplest time-dependent system measures
a pulse train, as described in item (5) in §??. Each pulse
is audible over a stable domain Ui and induces a signal in
S = (Si t ⊥)M , where M is the number of pulses emitted
and all the Si are the same. Assuming that perturbation of
the motion of the transmitter and the propagation of pulses
induces a generic perturbation of the transmission profile map
T : D → S , Theorem ?? and Corollaries ??-?? immediately
translate to the case of a single (mobile) transmitter sending
multiple pulses.

2) Path-crossing: Consider the space-time product D =
D′ × [0, T ] and the case of one or more transmitters in
motion in D′. Then, in the setting of TOA, TDOA, DOA,
or signal strength, one has a cover of D by stable patches Ui
delineating where and when a signal is readable. By Theorem
??, the signal profile map P : D′ × [0, T ] → R is injective
for dep(P) > 2(dim D′ + 1). Note well that this localizes
temporally as well as spatially.

This injectivity criterion has additional potential utility.
Assume that two mobile receivers move through the physical
or space-time domain D over the time interval [0, T ], but have
no information about their locations or relative distances. Did
the receivers ever cross paths?

Note that this applies to D a physical or a space-time
domain, allowing for determination of whether the receivers
covered the same territory at some times or whether the
receivers actually met. That such inference may be rigorously
concluded a posteriori within the received signal space R
seems novel. The reader may easily derive other similar
generalizations for inference via received signals.

Corollary 8. Two mobile receivers moving along paths
γ1, γ2 : [0, T ] → D. Their paths intersect in D if and only
if their images in R under P intersect, assuming dep(P) >
2 dim D.

Proof: If γ1(t) = γ2(s) for some t, s ∈ [0, T ], the images
of these points under P are the same. The map P : D →
R is injective since dep(P) is large enough and the other
hypotheses of Theorem ?? are satisfied; thus, if the images of
γ1 and γ2 intersect in R under P , they must have a point in
common in D.

C. Anonymous transmissions

The following asserts that anonymization of transmitter
sources does not impact signal depth criteria.

Proposition 9. For a signal profile in which all transmission
signals are of the same type (Si = X for all i) and the quotient
map to R is equivariant with respect to transmitter identities
(Φ is invariant under the action of the symmetric group SN
on S), then passing from identified to unidentified transmitters
does not change the dimension bounds on the self-intersection
set in Theorem ??.

Proof: In our formulation, the transmission profile de-
mands signal identities, since T : D →

∏
i(Xt⊥). The action

of the symmetric group SN : S → S permuting transmitter
identities descends by equivariance to an action SN : R → R.
The quotient R → R/SN is not a submersion (its derivative
is not of full rank), because the action of SN is not free1, as in
the case of two signals arriving at the same time, in which the
non-identity permutation of the transmitter identities is a fixed
point. However, the action of SN is free (and therefore has
derivative of full rank) on a dense codimension-0 submanifold
(the complement of the Φ-image of the pairwise diagonal in
XN ). The dimension bounds in the proof of Theorem ?? are
sensitive only to top-dimensional phenomena; thus, dep P
remains unchanged after quotienting by the SN action.

1) Doppler: As a final (dramatic) example of dynamic
transmitter-receiver localization, consider the situation of a
multistatic pulsed-doppler imaging radar system in a reflective
environment where there are N transmitters traveling along
unknown paths γk(t). We assume that transmitter k transmits
a pulse train with an unknown delay tk and a pulse repetition
interval T which is known and common to all transmitters.
The received signal is then a solution to

c2∆u− ∂
2u

∂t2
=

N∑
k=1

M−1∑
m=0

U(t−tk−mT, x−γk(t)), u|∂D = 0,

(5)
where U is a positive function supported within (−T/2, T/2)
with a unique local maximum. In order to facilitate processing,
it is typical for the receiver at x to divide the received signal
into blocks of length T and peak detect. Specifically, let

P̃ (t, x) =

{
τ :

d

dt
u(t− τ, x) = 0, and

d2

dt2
u(t− τ, x) < 0 for τ ∈ [0, T ]

}
.

Let P (t, x) be the vector of length N whose components
are the smallest N elements of P̃ , padded if needed with ⊥

1An action of a group on a set X is said to be free if the only group
element that fixes an element of X is the identity.
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if there are fewer than N elements in P̃ . Define the signal
profile to be P(t, x) = (P (t, x), dPdt (t, x)), carrying along ⊥
as appropriate. Even in this seemingly challenging situation,
the following corollary follows trivially.

Corollary 10. A generic P as defined above localizes the
receiver in time and space over a domain D whenever

κ := min
t,x

#P (t, x) > dim D + 3/2, (6)

where #P (t, x) is the number of non-⊥ components of
P (t, x).

Proof: Each Si = [0, T ) × R and Φ has rank defect
one (since the transmitters are not synchronized to a com-
mon source). Thus, at (x, t) the signal profile has depth
2#P (x, t)− 1, and for injectivity one needs,

2 dim D + 2 < dep P = 2κ− 1.

D. Multi-modal sensing and fusion

Since genericity can be decoupled from each of the trans-
mission functions independently, there is no reason why each
should represent the same kind of signal modality. In contrast
to some of the examples in the previous sections, we could
well consider a heterogeneous family of transmitters. For
instance, consider the situation where there are N transmitters
for whom the receivers can detect signal strength only, but
there are M for which signal strength and doppler can be
measured. In this case, S = (R t ⊥)N × (R2 t ⊥)M ,
which leads to dep P = N + 2M . A consequence of
this situation is that one can imagine design constraints that
balance the availability of inexpensive transmitters with more
expensive (but more capable) transmitters. The reader may
easily generalize.

E. Configuration spaces

There is no reason why D must conform to a physical
or even physical-temporal locus of receivers. Consider the
dual setting in which N receivers are fixed at locations in
a physical domain X (a compact manifold with corners). A
collection of M transmitters operate at distinct locations in
X . The parameter space (to be embedded in a signals space)
is the space of configurations of the M (labeled) transmitters,
CM (X) = XM − ∆X , where ∆X = {xi = xj for some
i 6= j}. Let D = CM (X), where, to ensure compactness, one
removes a sufficiently small open neighborhood of the pair-
wise diagonal ∆X . For simplicity, consider the restricted case
where all N receivers can hear all M transmitters, and that the
received signals are scalar-valued. The following result uses
Theorem ?? to derive the existence of triangulation-without-
distance algorithms: one can triangulate position based on a
non-isotropic signal without knowledge of locations or actual
distance.

Corollary 11. Under the above assumptions, the transmitter
positions are unambiguous for N > 2 dimX , independent of
M .

Proof: From Theorem ??, the criterion is:

2M dim X = 2 dim(CM(X)) < dim S = MN.

In particular, for a planar domain, the positions of the
transmitters is uniquely encoded in signal space by five fixed
receivers, independent of the number of (audible) transmitters,
providing a dual to Corollary ??. Five exceeds the three
needed for triangulation of position via geometry: for weaker
topological signals, more data is required.

V. QUANTIZATION

Discretized signals would seem to promise effective local-
ization. However, a straightforward application of Theorem ??
fails: using a quotient map Φ (recall §??) from S to a finite
set (of dimension zero) yields a P-weighted depth dep P = 0.
Clearly, a quantized signal profile cannot be injective; however,
if the quantization is fine enough, quantized signals should
distinguish points in D up to some small distance.

The following result indicates that inversion of the signal
profile is generically continuous, by showing that points which
are close in R must have preimages that are close in D. We
begin by specifying a geometry on S: suppose that each Si is
a Riemannian manifold, with induced metric di. The metric
on S is the product metric on the di, with the (intrinsic)
convention that d takes on the value ∞ if the points are in
distinct connected components of S.

Proposition 12. Let P : D → R be a received signal profile
with stable domains U = {Ui}N1 satisfying the assumptions
of §??, with, in addition: (1) S and R are Riemannian on
connected components; and (2) dep P > 2 dim D. For
individual transmission signal maps Ti open and dense in
C∞(Ui,Si), and for ε > 0 small, there exists a constant
K(ε) > 0 such that:

diam P−1 (Bε(P(x))) < K(ε)

uniformly in x ∈ D, with limε→0+ K(ε) = 0.

Proof: Recall from the proof of Theorem ?? the cover
V = {VJ} of D by compact closures of the intersection
lattice of the stable sets U . From the hypothesis on dep P ,
the restriction of P to each VJ (with the canonical extension
to any added boundary components) is a smooth embedding
of VJ onto its image. Smoothness and compactness yields a
function KJ(ε) bounding the diameters of preimages of the
restriction. As V is finite, there is a uniform K(ε) for which
the result holds.

This result indicates that a quantization on the received
signals space yields an ambiguity in the domain D of bounded
size; this in itself is suboptimal, since the bounds might be
poor.

VI. EXPERIMENTAL VALIDATION

To compensate for lack of hard bounds on quantization
ambiguity, and to test the applicability of the Signals Em-
bedding Theorem, we constructed two simple experiments.
The first experiment is a computer simulation of acoustic
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propagation, and the second uses acoustic hardware that we
constructed. The platform-independence of Theorem ?? gives
considerable freedom in selecting the transmitted waveforms
and the construction of the experiments. Since we focus on
the topological characterization of a propagation domain in
this article, we conducted our experiments to demonstrate:

1) The correctness of our our axiomatic characterization of
the signal profile;

2) That the resulting signal profile is injective (and remains
so up to a reasonable signal-to-noise ratio), and further-
more;

3) That it is possible to detect a change in the homotopy
type of the domain (roughly, the number of holes in the
domain) by means of the signal profile measured at a
collection of receiver locations.

The available tools for manipulating the resulting signal
profile and its image are primitive. We have explicitly avoided
the treatment of any methodology for inverting an injective
signal profile. Clearly, when robust metric information is
present (GPS, remote sensing, medical imaging, and many
other contexts), inversion of signal profiles has been extremely
important. However, very few algorithms (beyond the primitive
ones shown here) are tailored to treat noisy signal profiles
topologically.

A. Computer simulation

To provide a direct verification of the injectivity and conti-
nuity (when globally stable) of signal profiles, we conducted a
numerical simulation of the propagation of acoustic waves in
a topologically nontrivial 2-dimensional domain. We selected
a domain with a single rectangular obstacle, as shown in
Figure ?? (note that the region marked “Domain” corresponds
to the measurement domain in the second experiment; the
domain in the simulation was considerably larger). According
to Corollary ??, to exploit signal level or TOA requires 5
distinct transmitters, but to use TDOA (Corollary ??) we
require 6. In order to determine how tight these bounds are, we
simulated a case with 4 transmitters. We computed the signal
level and TOA for each of these transmitters, using a wavefront
propagation code [?]. In order to simplify interpretation of the
simulated results, we did not incorporate diffraction into the
model.

The simulated signal levels for each transmitter are shown in
Figure ??. The simulated TOA plots look qualitatively similar
to the signal level ones, but are reversed in color since the TOA
is small near each transmitter. Resulting projections of the 4
dimensional signal space for signal level and TOA are shown
in Figure ??, where it should be noted that color is one of
the dimensions. In both of these cases, it is visually apparent
(though perhaps difficult to see from the plots exhibited here)
that the signal profiles are injective. Additionally, since the
stable regions Ui each individually cover the domain, the
resulting profiles could theoretically be embeddings. That they
actually are embeddings is clear from Figure ??, due to the
presence of the hole.

In contrast, there is an additional dimensional deficiency if a
TDOA signal profile is used. This case is shown in Figure ??,

TX 1 TX 2

TX 3
TX 4

Obstacle (when present)

Domain

Fig. 1. Spatial layout of the experiment.

Fig. 2. Received signal level for each of the four simulated transmitters.
White indicates higher signal level, black indicates low signal level, measured
in decibels.

where we note that color is not an independent dimension. In
this case, there is a generic self-intersection in the image of
the signal profile, which belies a lack of injectivity.

B. Hardware overview

Several transmitters were constructed (see Figure ??) from a
PIC16F88 microcontroller, a simple audio pre-amplifier, and a
speaker. The microcontroller runs custom firmware that causes

Fig. 3. An illustrative projection of the signal level (left) and TOA
(right) signal profiles in four dimensions for our simulation. The cardinal
axes correspond to the signal level or TOA from TX 1-3, while the color
corresponds to TX 4.
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Fig. 4. An illustrative projection of the TDOA signal profiles in three
dimensions for our simulation. The cardinal axes correspond to the subsequent
time differences as discussed in §??. Note that color corresponds to the vertical
direction, unlike Figure ??.

Fig. 5. Acoustic sounders that were constructed to be transmitters in
experiments.

the sounder to emit square waves with arbitrary transition
times in the range of 5kHz-10kHz. Signal reception was
accomplished by the use of a standard laptop computer sound
card. The computer ran a custom real-time matched filter bank
(using the GStreamer multimedia framework) tuned to each
of the transmitters. When triggered by the user, the computer
stored the magnitude of each matched filter tap in a data file
for later processing.

We endeavored to conduct a physical experiment that mir-
rored our simulation results. Since both signal level and TOA
signal profiles appeared to be embeddings but TDOA does not,
we selected the same configuration of transmitters and domain
as used in our simulation.

The experiment was conducted on a laboratory floor cleared
of acoustically reflective obstacles in the immediate vicinity.
Scatterers were present outside of the experimental area,
resulting in potential multipath returns. For each run of the
experiment, transmitters were placed at the fixed locations
(labeled 1-4 as in the simulation), and the receiver was raster-

TABLE I
LISTING OF EXPERIMENTAL RUNS.

Run Obstacle Transmitters Comments
A No 1, 2 Calibration run (not shown)
B Yes 1, 3 Experimental collection
C Yes 2, 4 Experimental collection
D No 1, 3 Experimental collection
E No 2, 4 Experimental collection

Fig. 6. Thresholded signal levels from each transmitter as a function of
position. The top four frames represent runs B,C. Missing portions of the
data correspond to the presence of the obstacle.

scanned throughout the experimental domain (avoiding any
obstacles) with a spacing of 3 inches between samples. For
two of the runs, an acoustically opaque obstacle (a stack
of books) was placed within the experimental volume. See
Figure ?? for details of the layout and Table I for a listing
of the experimental runs. Runs B and C collectively consider
the case where there is an obstacle in the domain (and so the
domain is an annulus), while D and E address the case when
the domain is contractible.

C. Validation of signal model

The received signal levels corresponding to each transmitter
are displayed in Figure ??, which incorporates a choice of
signal level threshold (independently for each transmitter) to
simulate the failure of reception. These plots also incorporate
some spatial filtering (averaging of the signal levels from
adjacent sample points) to compensate for receiver instability.
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Fig. 7. Signal-to-noise ratio required to maintain injectivity of the signal
profile at a given receiver location in runs B,C (left) and runs D,E (right)

Fig. 8. Projection of received signal levels at each receiver. The data from
runs D,E (right) have been randomly downsampled to match the number of
points in runs B,C (left). The marked path tightly bounds the obstacle, when
it is present.

This latter processing improves the smoothness of the plots
but does not materially change the results. It is immediately
clear from these plots that there is a stable domain containing
each transmitter, and that away from this domain the reception
becomes erratic before dropping out completely. We regard
this as a validation of assumption (2) of the signal profile.

Given the experimentally collected data, it is straightforward
to infer properties of the signal profile. In this experiment, the
quantized signal profile was injective, in that each receiver
location had a unique response to the set of transmitters. Given
the potentially large dynamic range of the data, we found
that 18 dB of signal-to-noise ratio was required to ensure
that the resulting quantized signal profile remains injective.
Figure ?? shows the lowest signal-to-noise ratio required to
maintain injectivity at a given receiver location, and indicates
that this is fairly stable over the domain with an average
value of roughly 15 dB for both sets of runs. (We computed
Figure ?? by finding the radius of the largest ball around
each measurement whose preimage was connected.) It should
be noted that in this sense, signal-to-noise ratio is a metric
property of the signal profile. Although a signal profile may
be an embedding in a topological sense, if the resulting
profile under a perturbation is not an embedding, it may be
difficult to exploit our theory. Our experiments have therefore
demonstrated that this unhappy situation does not occur even
with relatively simple equipment.

D. Topological characterization of the domain

The maximal depth of the cover in this experiment is
three, which is below the required (five) for guaranteed signal
profile injectivity. However, even this appears to suffice for
the purposes of detecting the difference in topological type of
the domains used in runs B,C versus D,E. To see this, first
consider the projection of the data into two dimensions given

Fig. 9. Persistent homology barcodes of the two collection runs. The top two
correspond to the experiments with an obstacle (B and C), and the bottom
two correspond to the experiments without an obstacle (D and E).

in Figure ??. Using the formulae in [?] with the appropriate
values from the experiment results in a likelihood of about
10% that a random projection will be sufficiently close to an
isometry to be topologically accurate. Instead, we have plotted
a particularly illuminating projection, in which the cardinal
axes are the differences in signal levels between TX 1 and 3
(horizontal), and between TX 2 and 4 (vertical). The plot on
the left clearly shows a “hole” (in the interior of the path) that
gives the location of the obstacle. The plot on the right shows
no such hole, and indicates that no obstacle is present.

Evidently the projection in Figure ?? is far from random,
so it is desirable to have a more objective measure of the
validity of detection of the topological. Recently, PERSISTENT
HOMOLOGY has emerged as an effective tool for examining
the topology of point clouds sampled from a topological
space [?], [?]. This algebraic method discriminates between a
contractible planar domain and one punctured by obstacles. In
particular, the presence of a persistent generator of homology
in dimension one (H1) indicates the presence of an obstacle.
We computed this persistent homology using JPlex [?];
its signature, or BARCODE, is shown in Figure ??. Briefly,
persistent homology counts path components and holes present
in a family of spaces related to a discrete subspace of a metric
space. Rather than considering the discrete space (our mea-
surements) directly, one considers a union of balls of a varying
(common) radius centered on each point. The horizontal axis
in Figure ?? corresponds to the radius of these balls: smaller
is on the left and larger is on the right. In our data, these
radii are inversely proportional to signal-to-noise ratio and the
horizontal units in Figure ?? are in decibels. Each horizontal
bar corresponds to a connected component (in dimension 0) or
a nontrivial loop (in dimension 1). Longer bars correspond to
features that “persist” for more choices of radius, and therefore
are considered more important. Conversely, shorter bars are
considered to be the effect of noise.

It is immediately clear that both runs came from connected



IEEE TRANSACTIONS ON SIGNAL PROCESSING 11

domains (since there is one dimension 0 bar that persists for
almost all scales). There are some persistent generators in
dimension 1 (holes) for both sets of runs, but there is only one
substantial hole in experiments B and C that persists in excess
of 0.5 dB. This indicates the strong possibility of the presence
of a 1-dimensional hole in the domain for the case of runs B
and C but not in runs D and E. Hence, we conclude that the
experiment has detected a topological change in the domain,
and in particular identifies the presence of one obstacle in runs
B and C and no obstacles in D and E.

VII. CONCLUSION

This paper builds a general theoretical framework in which
to analyze signals of opportunity and utilize such to character-
ize a domain in terms of a representation into the appropriate
space of signals.

Our approach could be exploited to permit localization in
contexts where it is presently impossiblle, and may provide
a mechanism to exploit GPS or other reference signals that
are heavily corrupted due to uncertainty about multipath,
transmitter position, timing, and power level.

Of note in our approach are the following features:
1) Instead of trying to reconstruct coordinates within the

domain, it can be effective and profitable to work
completely within the space of signals. Given sufficient
control over the signal profile depth, this representa-
tion is faithful, modulo the discontinuities induced by
limited-extent signals.

2) One advantage of working within a space of signals
is the independence of the signal type. The topological
approach reveals that dimension is the critical resource
for faithful representation.

3) Although the differential-topological tools used assume
a high degree of regularity and ignore noise and other
inescapable system features, the robustness of the results
to quantization — as verified in theory, simulation, and
experiment — argues for wide applicability.
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APPENDIX

A DIFFERENTIAL n-MANIFOLD is a paracompact Hausdorff
space M with an open covering U = {Uα} and maps φα :
Uα → Rn which are homeomorphisms onto their images and
for which the restriction of φβφ−1

α to Uα∩Uβ is a smooth (C∞

for our purposes) diffeomorphism whenever Uα∩Uβ 6= ∅. One
says that an n-manifold is MODELED on Rn via CHARTS Uα
in an ATLAS U . An n-manifold with BOUNDARY is a space
locally modeled on Rn or the upper halfspace R+ × Rn−1,
depending on the chart. An n-manifold with CORNERS allows
a choice of any (R+)k × Rn−k as local models.

To each point p in a manifold M is associated a TANGENT
SPACE, TpM , a R-vector space of dimension dim M that
records tangent data at p. The collection of tangent spaces fit
together into a TANGENT BUNDLE, a manifold T∗M , defined
locally as charts of M crossed with RdimM . Maps between
manifolds are said to be smooth if the restriction of the map
to charts yields smooth maps between charts. Such maps
f : M → N induce a DERIVATIVE Df : T∗M → T∗N
defined on charts via the Jacobian derivative. The JET BUN-
DLE Jr(M,N) is the manifold which records all degree r
Taylor polynomials associated to maps in Cr(M,N), with the
topology inherited from M (source points), N (target points),
and the usual topology on real coefficients of polynomials.
We use C∞ smoothness in this paper, and place the usual
(Whitney) C∞ topology on the space C∞(M,N) of smooth
maps from M to N : a C∞ neighborhood of f : M → N has
basis functions g whose r-jets are close, as measured by the
topology on Jr(M,N).

A subset A ⊂ X is RESIDUAL if it is the countable
intersection of open dense subsets of X . For BAIRE spaces,
like C∞(M,N), residual sets are always dense. A property is
GENERIC (or holds generically) with respect to a parameter
space if that property is true on a residual subset of the
parameter space.

Two submanifolds V,W in M are transverse, written V t
W , if and only if TpV ⊕ TpW = TpM for all p ∈ V ∩W —
the tangent spaces to V and W span that of Mat intersections.
Note that the absence of intersection is automatically trans-
verse. A smooth map f : V →M to a submanifold W ⊂ N if
and only if Dfv(TvV )⊕ (TpW ) = TpM whenever f(v) = p.
The JET TRANSVERSALITY THEOREM states that for W a
submanifold of Jr(M,N), the set of maps in C∞(M,N)
whose r-jets are transverse to W is residual. This readily
yields the simpler transversality theorem that the subset of
C∞(M,N) transverse to a submanifold W ⊂ N is residual
(and, furthermore, open if W is closed).


