Read Apostol, Chapter 9, sections 1-7, pages 358-368; and Chapter 3, sections 1-10, pages 126-145. (In section 3.4, omit from Theorem 3.4 to the end of the section, pp. 134-135.) Optional: Also read sections 8-9 of Chapter 9, pages 368-371.

1. From Apostol, 9.6, page 365, do problems 1 (a,e,g), 3 (f,i), 6-8.
2. From Apostol, 3.6, pages 138-140, do problems 2, 27, 31.
3. a) Prove that for every complex number c and every positive integer n, there is a complex number z such that $z^{n}=c$. [Hint: If z has polar form (r, θ), what is the polar form of z^{n} ?]
b) Explicitly find all complex numbers z such that $z^{4}=-1$.
4. Using just the definition of limit, prove that $\lim _{x \rightarrow 0}(3 x+2)=2$. In other words, for each $\varepsilon>0$ show that there is an appropriate $\delta>0$.
5. For each of the following functions f, determine whether $\lim _{x \rightarrow 0} f(x)$ exists; and if it does, find it. Explain carefully why your assertions hold.
a) $f(x)=1$ for $x>0 ; f(x)=-1$ for $x<0$; and $f(0)=0$. [This is called the signum function, often denoted $\operatorname{sgn}(x)$.]
b) $f(x)=|x|$.
c) $f(x)=x \sin (1 / x)$ for $x \neq 0, f(0)=0$.
d) $f(x)=x^{2} \sin (1 / x)$ for $x \neq 0, f(0)=0$.

Note: You may find it helpful to graph these functions first. For parts (c) and (d), compare problem 27 in section 3.6 ; and consider the squeezing principle.

