Math 116

From Apostol, read Chapter 3, section 16. Read Chapter 4, sections 3-5, 10, 13, 14, 16, 17. Also read Chapter 1, sections 9-14. Optional: Read Chapter 3, sections 12-14 and 17; and Chapter 4, sections 1, 2, 7, 8, 11, 18, 20.

1. From Apostol, $\S4.6$, pages 167-168, do problem 38; in $\S4.9$, page 173, do problems 7 and 9; and in $\S4.12$, page 179, do problem 14.

2. From Apostol, $\S1.15$, page 70, do problems 1 (a,d,e), 2, 3, 5(a).

3. For each of the following functions f, determine whether f has a maximum value and whether it has a minimum value. If such values exist, find them and find for which values of x they are achieved. Relate your answer to the extreme value theorem.

a) $f(x) = x^3 - 2x^2 - 4x + 1$ on the interval $0 \le x \le 4$.

- b) Same as (a) but on the interval 0 < x < 4.
- c) $f(x) = 1/x^2$ if $-1 \le x \le 1$ with $x \ne 0$; and f(0) = 0.
- d) f(x) = x [x] for $0 \le x \le 3$.

4. Which of the following functions are differentiable at x = 0? For each one that is, find f'(0), and determine whether the function f' is continuous at x = 0.

- a) $f(x) = \sin(1/x)$ for $x \neq 0$, f(0) = 0. b) $f(x) = x \sin(1/x)$ for $x \neq 0$, f(0) = 0. c) $f(x) = x^2 \sin(1/x)$ for $x \neq 0$, f(0) = 0.
- d) $f(x) = x^3 \sin(1/x)$ for $x \neq 0$, f(0) = 0.

5. Find a function f on \mathbb{R} such that f is differentiable at x = 0 and f is discontinuous at every $x \neq 0$.