From Apostol, read Chapter 3, section 16. Read Chapter 4, sections 3-5, 10, 13, 14, 16, 17. Also read Chapter 1, sections 9-14. Optional: Read Chapter 3, sections 12-14 and 17; and Chapter 4 , sections $1,2,7,8,11,18,20$.

1. From Apostol, $\S 4.6$, pages $167-168$, do problem 38 ; in $\S 4.9$, page 173 , do problems 7 and 9 ; and in $\S 4.12$, page 179 , do problem 14 .
2. From Apostol, $\S 1.15$, page 70, do problems 1 (a,d,e), 2, 3, 5(a).
3. For each of the following functions f, determine whether f has a maximum value and whether it has a minimum value. If such values exist, find them and find for which values of x they are achieved. Relate your answer to the extreme value theorem.
a) $f(x)=x^{3}-2 x^{2}-4 x+1$ on the interval $0 \leq x \leq 4$.
b) Same as (a) but on the interval $0<x<4$.
c) $f(x)=1 / x^{2}$ if $-1 \leq x \leq 1$ with $x \neq 0$; and $f(0)=0$.
d) $f(x)=x-[x]$ for $0 \leq x \leq 3$.
4. Which of the following functions are differentiable at $x=0$? For each one that is, find $f^{\prime}(0)$, and determine whether the function f^{\prime} is continuous at $x=0$.
a) $f(x)=\sin (1 / x)$ for $x \neq 0, f(0)=0$.
b) $f(x)=x \sin (1 / x)$ for $x \neq 0, f(0)=0$.
c) $f(x)=x^{2} \sin (1 / x)$ for $x \neq 0, f(0)=0$.
d) $f(x)=x^{3} \sin (1 / x)$ for $x \neq 0, f(0)=0$.
5. Find a function f on \mathbb{R} such that f is differentiable at $x=0$ and f is discontinuous at every $x \neq 0$.
