Reminder: The first exam will be held in class on Monday, October 6.
From Apostol, read Chapter 12, sections 7-16.

1. From Apostol, 12.8, pages 456-457: do problems 5, 6, 13, 19 (and explain the geometric interpretation in \#19).
2. From Apostol, 12.11, pages 460-462: do problems 1, 10(a), 12, 17(a,b), 18.
3. From Apostol, 12.15, pages 467-468: do problems 1, 6, 7, 20.
4. In the situation of problem 6 on Problem Set $\# 4$, let $f(x)=\sin (\pi x)$ and $g(x)=\cos (\pi x)$. Evaluate $\|f\|,\|g\|$, and $f \cdot g$.
5. a) Show that if we define a new dot product on \mathbb{R}^{2} by

$$
\left(a_{1}, a_{2}\right) \cdot\left(b_{1}, b_{2}\right)=2 a_{1} b_{1}+a_{1} b_{2}+a_{2} b_{1}+a_{2} b_{2},
$$

then the usual laws of dot product (see Apostol, Theorem 12.2) are still satisfied.
b) In terms of coordinates, write an explicit formula for a new norm on \mathbb{R}^{2} that is related to this dot product by the equation $\|v\|^{2}=v \cdot v$.
c) Explain why the properties of norm given in Theorems 12.4 and 12.5 are automatically satisfied for this new norm (i.e. without the need to do any new computations).
6. In \mathbb{R}^{n} (with $n \geq 2$), show that there is no way to redefine the dot product in a way that will still satisfy the usual laws of dot product but will also give the norm defined in problem 18 in Apostol, section 12.11. [Hint: Under this norm, what are the norms of e_{1}, e_{2}, and $e_{1}+e_{2}$, where e_{1}, \ldots, e_{n} are the unit coordinate vectors?]

