From Apostol, read Chapter 13, sections 1-7.

1. From Apostol, 13.5, page 477: do problems 1, 4, 7.
2. From Apostol, 13.8, pages 482-483: do problems 1, 3, 10, 12.
3. Let $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{3}$. Suppose that v_{1} and v_{2} are non-zero orthogonal vectors, and let P be the span of $\left\{v_{1}, v_{2}\right\}$. For $i=1,2$ let $a_{i}=v_{3} \cdot v_{i} /\left\|v_{i}\right\|^{2}$, and let $w=a_{1} v_{1}+a_{2} v_{2}$.
a) Show that P is a plane through the origin.
b) Show that w is the orthogonal projection of v_{3} onto P; i.e. that $v_{3}-w$ is orthogonal to every vector in the plane.
c) Show that w is the closest point to v_{3} on P.
d) Interpret parts (b) and (c) in the special case that v_{3} lies in P, and explain why those parts were already known by a previous result in that case.
4. Show that the points of a line in \mathbb{R}^{n} satisfy all the laws of a vector space (see Axioms $1-10$, section 15.2, pages 551-552 of Apostol) if and only if the line contains the origin.
5. a) Let L be a line in \mathbb{R}^{2}. Prove that the set of vectors in L spans \mathbb{R}^{2} if and only if L does not contain the origin.
b) State and prove an analog for planes in \mathbb{R}^{3}.
c) What about lines in \mathbb{R}^{3} ?
