From Apostol, read Chapter 13, sections 1-7.

- 1. From Apostol, 13.5, page 477: do problems 1, 4, 7.
- 2. From Apostol, 13.8, pages 482-483: do problems 1, 3, 10, 12.
- 3. Let $v_1, v_2, v_3 \in \mathbb{R}^3$. Suppose that v_1 and v_2 are non-zero orthogonal vectors, and let P be the span of $\{v_1, v_2\}$. For i = 1, 2 let $a_i = v_3 \cdot v_i / ||v_i||^2$, and let $w = a_1 v_1 + a_2 v_2$.
 - a) Show that P is a plane through the origin.
- b) Show that w is the orthogonal projection of v_3 onto P; i.e. that $v_3 w$ is orthogonal to every vector in the plane.
 - c) Show that w is the closest point to v_3 on P.
- d) Interpret parts (b) and (c) in the special case that v_3 lies in P, and explain why those parts were already known by a previous result in that case.
- 4. Show that the points of a line in \mathbb{R}^n satisfy all the laws of a vector space (see Axioms 1-10, section 15.2, pages 551-552 of Apostol) if and only if the line contains the origin.
- 5. a) Let L be a line in \mathbb{R}^2 . Prove that the set of vectors in L spans \mathbb{R}^2 if and only if L does not contain the origin.
 - b) State and prove an analog for planes in \mathbb{R}^3 .
 - c) What about lines in \mathbb{R}^3 ?