From Apostol, read Chapter 13, sections 9-23.

1. From Apostol, 13.11, page 487-488: do problems 1(c,d), 2(a), 3(c), 8(a).
2. From Apostol, 13.14, pages 491-492: do problems 1(a), 2, 3.
3. From Apostol, 13.21, page 503: do problems 4, 5, 8.
4. From Apostol, 13.24, pages 508-509: do problems 1, 7, 13, 26.
5. Suppose that $v, w \in \mathbb{R}^{3}$. If $v \times(v \times w)=0$, what can you conclude about v and w ? Is this a necessary and sufficient condition?
6. In analogy with Theorem 9.2 of Apostol, write a vector $(a, b, c, d) \in \mathbb{R}^{4}$ as $a+b i+c j+d k$. Also, define a multiplication law on \mathbb{R}^{4} so that $i j=k, j k=i, k i=j, j i=-k, k j=-i$, $i k=-j$ (as with cross product); and also so that $i^{2}=j^{2}=k^{2}=-1$ (unlike the cross product); and so that $1 v=v=v 1$ for all $v \in \mathbb{R}^{4}$.
a) Under this multiplication, evaluate $(i+j)^{2}$ and $(1+i+j+k)(1-i-j-k)$.
b) Which of the axioms of a field (Axioms 1-6 on page 18 of Apostol) are satisfied by the elements of \mathbb{R}^{4} under vector addition and the above multiplication law?
c) Call an element $v \in \mathbb{R}^{4}$ central if $v w=w v$ for all $w \in \mathbb{R}^{4}$. Find all the central elements of \mathbb{R}^{4}.
