From Apostol, read Chapter 14, sections 1-6.

1. From Apostol, 13.25, pages 509-511: do problems 1, 4, 13(a), 16.
2. From Apostol, 14.4, pages 516-517: do problems 2, 4, 8, 14, 15, 19.
3. From Apostol, 14.7, pages 524-525: do problems 1, 2, 7, 10, 17.
4. a) Let L be a line in the plane and let C be a conic section in the plane. At how many points can L and C meet? Give examples illustrating each possible value.
b) In part (a), if L is tangent to C at a point P, then at how many points (including $P)$ can L and C meet?
c) Make a conjecture concerning the number of points at which two distinct conic sections C, C^{\prime} in the plane can meet. Give examples to illustrate each of the possible values.
5. Suppose that $F: \mathbb{R} \rightarrow \mathbb{R}^{2}$ is a differentiable vector-valued function, that $c \in \mathbb{R}$, and that $\int_{c}^{x} F(t) d t=\left(x^{2}-x, x^{2}-1\right)$ for all $x \in \mathbb{R}$. Find F and find c.
6. Let $F: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a differentiable vector-valued function that parametrizes the motion of a particle in \mathbb{R}^{n} whose speed is always at most c (where c is some positive real number).
a) Prove that if $a<b$ then $\|F(b)-F(a)\| \leq c(b-a)$. Also explain why this is reasonable from a geometric point of view.
b) Give an example of a function F and values $a<b$ for which there is equality in part (a), and give another example in which there is a strict inequality.
