From Apostol, read Chapter 14, sections 8-20.

1. From Apostol, 14.7, pages 524-525: do problem 14 (Hint: adapt the previous argument in the case of an ellipse); and 14.9, pages 528-529: do problems 1, 2, 7.
2. From Apostol, 14.13, pages 535-536: do problems 2, 11, 13.
3. From Apostol, 14.15, pages 538-539: do problems 1 (do just for $\# 1,2$ of 14.9), 2, 4, 7 ; and 14.19, pages 543-545: do problems 1, 2(a), 4, 5.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function. Parametrize the plane curve $y=f(x)$ by $F(t)=(t, f(t))$, and suppose that $F(a)=(a, f(a))$ is an inflection point of this curve for some value of a. Prove that $T^{\prime}(a)=0$, where $T(t)$ is the unit tangent vector to the curve at the point $F(t)$. Is the principal normal vector $N(a)$ at $F(a)$ defined?
5. a) Find the arclength of the plane curve given parametrically by $F(t)=\left(2 t, \frac{t^{3}}{3}+\frac{1}{t}\right)$, for $1 \leq t \leq 3$.
b) Find the arclength of the plane curve whose graph is $y=\log \cos x$ for $0 \leq x \leq \pi / 4$. (Here \log is the natural logarithm.)
6. Consider the curve in \mathbb{R}^{3} given parametrically by $F(t)=t i+t^{2} j+t^{3} k$, where i, j, k are the unit basis vectors. Find the curvature at the origin, and find all points where the curvature is zero.
