Reminder: The second exam will be held in class on Monday, November 10.

From Apostol, read Chapter 4, section 22.

- 1. From Apostol, 4.23, page 201, do problems 1, 2, 4, 10. In #1,2,4, also find all critical points (i.e. points where $f_x = f_y = 0$ or where either f_x or f_y is undefined). In #10, such a function is called *harmonic*.
- 2. Let $F: \mathbb{R} \to \mathbb{R}^3$ be a differentiable function such that F' is never 0. Let T(t) be the unit tangent vector to the parametrized curve at the point F(t). Show that the curvature $\kappa(t)$ is given by the formula $||F''(t) \times F'(t)||/||F'(t)||^3$ even if T'(t) = 0.
- 3. Let a > b > 0 and consider the ellipse $x^2/a^2 + y^2/b^2 = 1$. Let P, P' be the foci. Let $F: [0,1] \to \mathbb{R}^2$ be a parametrization of the ellipse such that F(0) lies on the x-axis and the speed is constant.
- a) Show that $||F(t) P|| + ||F(t + \frac{1}{2}) P|| = 2a$ for all $t \in [0, 1/2]$. [Hint: If Q lies on the ellipse, find the value of ||Q P|| + ||Q P'||.]
 - b) Deduce that $\int_{0}^{1} ||F(t) P|| dt = a$.
- c) Explain why this says that the average distance from a point on the ellipse to P is equal to a.
- 4. Let $F: \mathbb{R} \to \mathbb{R}^2$ be a differentiable function whose position and velocity vectors are linearly dependent at each point. Show that the curve traced out by F lies on a line through the origin. [Hint: If $F(t) = (f_1, f_2)$, then what is $(f_1/f_2)'(t)$?]