Instructions: This exam consists of five problems. Do all five, showing your work and explaining your assertions. Give yourself 50 minutes. Each problem is worth 20 points.

- 1. Suppose that $T \subset S \subset \mathbb{R}$, and that $T \neq \emptyset$.
 - a) Show that if S has a supremum, then so does T.
 - b) Determine whether the converse also holds.
- 2. Let $f(x) = x^2[x]$, where [x] is the greatest integer in x.
 - a) On which closed intervals is f integrable?
 - b) Evaluate $\int_0^2 f(x) dx$ if it exists.
- 3. Let f be a function with the property that $-x^2 \leq f(x) \leq x^2$ for all x.
 - a) Determine whether f is continuous at x = 0.
 - b) Determine whether f is differentiable at x = 0. If it is, find f'(0).

4. a) In terms of ε , δ , write out explicitly the meaning of the assertion that the function f(x) = 3x is continuous at x = 0.

b) Explicitly prove this assertion by finding an appropriate δ for each ε .

5. Prove or disprove each of the following assertions:

a) For every $v \in \mathbb{R}^2$ there exists a non-zero vector $w \in \mathbb{R}^2$ such that $v \perp w$ (i.e. $v \cdot w = 0$).

b) If $v \in \mathbb{R}^2$ has the property that $v \cdot w \ge 0$ for all $w \in \mathbb{R}^2$, then v = 0.