Instructions: This exam consists of five problems. Do all five, showing your work and explaining your assertions. Give yourself 50 minutes. Each problem is worth 20 points.

- 1. Let $v, w, z \in \mathbb{R}^3$.
 - a) Show that if v + w + z = 0 then the set $\{v, w, z\}$ cannot span \mathbb{R}^3 .
 - b) Show that if $v \times w = v w$, then v = w.
- 2. a) Find a vector $z \in \mathbb{R}^3$ of length 1 that is orthogonal to the vectors v = (1, 1, 0) and w = (0, 1, 1).
- b) With v, w, z as in part (a), find the volume of the parallelepiped generated by these three vectors.
- 3. a) Find the focus and directrix of the parabola $y = 2x^2$.
- b) Find all points of this parabola where the curvature is maximal. Is there any point at which the curvature is minimal?
- 4. Let P=(1,1,1) and Q=(2,3,-1) in \mathbb{R}^3 . Let L be the line in \mathbb{R}^3 that passes though P and Q.
- a) Find a differentiable function $F: \mathbb{R} \to \mathbb{R}^3$ that parametrizes the line L, such that F(0) = P, and such that the speed at every point is 1. Find the acceleration at each point.
 - b) Find a plane in \mathbb{R}^3 that is perpendicular to L and passes through the point P.
- 5. Let $F: \mathbb{R} \to \mathbb{R}^2$ be a differentiable function. For each of the following assertions, either give a proof or a counterexample.
- a) If F parametrizes a circle centered at the origin, then the acceleration vector at each point is a multiple of the position vector.
 - b) If the velocity is constant, then the curvature is 0.