1. Consider an action of a group G on a set X.
a) Show by example that the stabilizers of two elements of X can have different orders.
b) Show that if $x_{1}, x_{2} \in X$ lie in the same orbit, then their stabilizers must have the same order, and in fact must be conjugate subgroups.
c) Must the stabilizers of x_{1}, x_{2} in (b) be equal? Must the stabilizer of an element of X be normal in G ?
2. Interpret each of the following objects in terms of stabilizers, and determine which must be normal subgroups of G :
a) The kernel of a group action $\phi: G \rightarrow \operatorname{Sym}(X)$.
b) The centralizer of an element $x \in G$.
c) The center of a group G.
d) The normalizer $N_{G}(H)$ of a subgroup $H \subseteq G$.
e) The centralizer $C_{G}(H)$ of a subgroup $H \subseteq G$.
3. Given a group G acting on a finite set X, and an element $x \in X$, write $G x$ for the orbit of x and write G_{x} for the stabilizer of x.
a) Show that $|G x|=\left(G: G_{x}\right)$. (In particular, the right hand side is finite.)
b) Consider the orbits that have more than one element, pick one element from each of these orbits, and gather them together as a set S. Show that $|X|=\left|X^{G}\right|+\sum_{x \in S}\left(G: G_{x}\right)$, where $X^{G} \subseteq X$ is the set of elements that are fixed by all of G.
c) Interpret these two equalities in each of these two cases, where G is a finite group:
i) G acts on itself by conjugation.
ii) A subgroup K of G acts on the set of subgroups of G by conjugation.
4. a) If H is a subgroup of G and $H \neq G$, we say that H is a maximal subgroup if the only subgroups containing H are itself and G. Show that if H is maximal then so is $a H a^{-1}$, for any $a \in G$.
b) Define the Frattini subgroup Φ of G to be the intersection of the maximal subgroups of G. Show that $\Phi \triangleleft G$.
c) Find the Frattini subgroup Φ of the groups D_{4}, C_{4}, and $C_{4} \times C_{2} \times C_{2}$. Do the same for the quaternion group $Q=\{ \pm 1, \pm i, \pm j, \pm k\}$ (under the usual multiplication of quaternions). In each case, find G / Φ. Conjecture?
5. Prove or disprove each of the following.
a) A group is abelian if and only if every subgroup is normal.
b) Let H, K be subgroups of G. Then $H K:=\{h k \mid h \in H, k \in K\}$ is a subgroup of G if and only if $H K=K H$. This equality holds in particular if either H or K is normal.
