1. a) Assume that $\# G=p q$, where p and q are prime. Show that at least one of its Sylow subgroups is normal.
b) With G as above, assume $p \geq q$. Show that either G is abelian or else q divides $p-1$.
c) Find all groups of order 51 , and all groups of order 55 . Which are simple? solvable? nilpotent? abelian? cyclic?
2. Find an extension G of C_{6} by C_{7} such that the generator of C_{6} acts by conjugation on C_{7} as an automorphism of order 3. How many Sylow p-subgroups does G have, for each p ?
3. Let G be a p-group, and let Φ be its Frattini subgroup.
a) Show that if $g \in G$ then $g^{p} \in \Phi$. (Hint: If $H \subset G$ is a maximal subgroup, show that $g^{p} \in H$ by considering its image in G / H.)
b) Deduce that every element of G / Φ has order 1 or p.
c) Conclude that G / Φ is isomorphic to $(\mathbb{Z} / p)^{n}=\mathbb{Z} / p \times \cdots \times \mathbb{Z} / p$ (with n factors) for some $n \geq 0$.
4. If K is a group and S is a subset of K that generates K, we will call S a minimal generating set for K if no proper subset of S also generates K.
a) Show that every minimal generating set of $(\mathbb{Z} / p)^{n}$ has exactly n elements. (Hint: View $(\mathbb{Z} / p)^{n}$ as a vector space.)
b) Prove or disprove: If G is any finite group, then any two minimal generating sets for G have the same number of elements.
c) Let G be a p-group with Frattini subgroup Φ, so that G / Φ is isomorphic to $(\mathbb{Z} / p)^{n}$ (as in problem 1(c)). Show that
(i) Every minimal generating set for G has exactly n elements.
(ii) If T is a subset of G with exactly n elements, then T is a minimal generating set for G if and only if its image under $G \rightarrow G / \Phi$ is a minimal generating set for G / Φ.
(Hint: Use Problem Set 2 \#4 and problems 3(c) and 4(a) above.)
(Remark: Part (c) is also called the Burnside Basis Theorem.)
5. a) Show that every element of A_{5} is conjugate (in A_{5}) to exactly one of the following five elements:

$$
1,(123),(12)(34),(12345),(12354) .
$$

Determine the number of elements conjugate to each.
b) Deduce that A_{5} is simple. [Hint: Show that every normal subgroup is a union of conjugacy classes. Then apply part (a) and Lagrange's Theorem.]
c) Show that neither A_{5} nor S_{5} is solvable.

