1. Show that A_{4} is isomorphic to a semi-direct product $C_{2}^{2} \rtimes C_{3}$.
2. Suppose that $N \triangleleft S_{5}$.
a) Show that if N contains a transposition (a, b) then $N=S_{5}$. (Hint: The set of transpositions generates S_{5}.)
b) Show that if $N \cap A_{5}=1$ and $\sigma \in N$, then either $\sigma=1$ or else σ is a transposition. (Hint: Show that $\sigma^{2}=1$.)
c) Conclude that $N=1, A_{5}$, or S_{5}.
3. Let $n>2$. Show that the dihedral group D_{n} of order $2 n$ is isomorphic to a semi-direct product $C_{r} \rtimes C_{s}$ if and only if $r=n$ and $s=2$.
4. Determine which of the following groups are isomorphic: $Q, D_{4}, C_{8}, C_{2}^{3},\left(C_{2}\right)^{2} \rtimes C_{2}$, where in the last group the generator of the latter C_{2} acts by interchanging the two factors of $\left(C_{2}\right)^{2}$. (This last group is also written as C_{2} 乙 C_{2}, and it is a special case of what is called as wreath product. In general, $N \imath H$ is the semi-direct product $N^{H} \rtimes H$, where N^{H} is the direct product of copies of N indexed by the elements of H, and the elements of H act by permuting the factors of N^{H} by left multiplication on the indices.)
5. Find all groups of order 66 , up to isomorphism. Which are simple? solvable? nilpotent? abelian? cyclic? Which are split extensions (of a non-trivial quotient by a non-trivial subgroup)?
