1. a) Show directly that every group of order 56 is solvable. [Hint: How many elements have order 7?]
b) Consider the finite groups whose order is 56 and whose exponent is 14 . For each such group, let N_{p} be the number of Sylow p-subgroups, for $p=2,7$.
(i) Do there exist such groups with $N_{2}=N_{7}=1$?
(ii) Do there exist such groups with $N_{7}=1$ and $N_{2}>1$?
(iii) Do there exist such groups with $N_{2}=1$ and $N_{7}>1$?
(iv) Do there exist such groups with $N_{2}>1$ and $N_{7}>1$?
2. Find two extensions G of a fixed finite group B by a fixed finite abelian group A such that the two groups G are isomorphic as groups, but such that the two extensions $1 \rightarrow A \rightarrow G \rightarrow B \rightarrow 1$ are not isomorphic as extensions of B by A. [Hint: Try $A=C_{3}^{2}$ and $B=C_{2}$.]
3. Show that there is a unique group action of $\mathbb{Z} / 2$ on $\mathbb{Z} / 2$. With respect to that action, directly compute the groups $C^{2}(\mathbb{Z} / 2, \mathbb{Z} / 2), Z^{2}(\mathbb{Z} / 2, \mathbb{Z} / 2), B^{2}(\mathbb{Z} / 2, \mathbb{Z} / 2), H^{2}(\mathbb{Z} / 2, \mathbb{Z} / 2)$. In the case of H^{2}, interpret each element in terms of an extension of $\mathbb{Z} / 2$ by $\mathbb{Z} / 2$.
4. With respect to each of the actions of $\mathbb{Z} / 2$ on $\mathbb{Z} / 3$, compute $H^{0}(\mathbb{Z} / 2, \mathbb{Z} / 3), H^{1}(\mathbb{Z} / 2, \mathbb{Z} / 3)$, $H^{2}(\mathbb{Z} / 2, \mathbb{Z} / 3)$. How does each H^{2} relate to group extensions?

5 . Let G be a finite group and let p be a prime number. Show that G contains a subgroup F of order prime to p such that for every quotient $E:=G / N$ of G of order prime to p, the composition $F \hookrightarrow G \rightarrow E$ is surjective. Do this in steps as follows:
i) Let $Q \subseteq G$ be the subgroup generated by all the Sylow p-subgroups of G. Let P be a Sylow p-subgroup of G, and let $G^{\prime}=N_{G}(P)$. Show that Q is a normal subgroup of G, and that the quotient map $\pi: G \rightarrow H:=G / Q$ restricts to a surjection $\pi^{\prime}: G^{\prime} \rightarrow H$. [Hint: Say $\pi(g)=h$. Must P and $g P g^{-1}$ be conjugate subgroups of Q ? Does this yield an element of G^{\prime} that maps to h ?] Show that H is the largest quotient of G of order prime to p.
ii) Deduce that G^{\prime} (and hence also G) contains a subgroup F having order prime to p such that $\pi(F)=H$, and that F has the desired property. [Hint: With $Q^{\prime}=N_{Q}(P)$, consider the exact sequences $1 \rightarrow Q^{\prime} \rightarrow G^{\prime} \rightarrow H \rightarrow 1,1 \rightarrow P \rightarrow G^{\prime} \rightarrow G^{\prime} / P \rightarrow 1$, and $1 \rightarrow Q^{\prime} / P \rightarrow G^{\prime} / P \rightarrow H \rightarrow 1$, and apply Schur-Zassenhaus to one of them.]

