1. Which of the following are rings? (Note: To be a ring, it must have a multiplicative identity.) For those which are not, why not? For those which are, are they commutative? integral domains? fields?
a) $\mathbb{Q}\left[e^{2 \pi i / 15}\right]$.
b) $M_{n}(\mathbb{Z}[[x]])$.
c) $\mathbb{Z} \times \mathbb{R}$, with $(a, b)+(c, d)=(a+c, b+d),(a, b) \cdot(c, d)=(a c, b d)$.
d) $\mathbb{R} \times \mathbb{R}$, with $(a, b)+(c, d)=(a+c, b+d),(a, b) \cdot(c, d)=(a c-b d, a d+b c)$. (Hint:

Where have you seen this before?)
e) $x \mathbb{R}[x]$, the polynomials that are multiples of x.
2. Do the same for the following:
a) $\{$ continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}\}$ under addition and multiplication.
b) $\{$ continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}\}$ under addition and composition.
c) $\{$ continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with compact support (i.e. functions that vanish except in some interval $[-n, n]$), under addition and multiplication.
3. Which of the following are ring homomorphisms? For those which are not, why not? For those which are, what are the kernels and images?
a) $f: \mathbb{R}[x] \rightarrow \mathbb{R}, f\left(\sum_{i=0}^{n} a_{i} x^{i}\right)=\sum_{i=0}^{n} a_{i} 3^{i} \quad\left(a_{i} \in \mathbb{R}\right)$
b) $f: \mathbb{C} \rightarrow \mathbb{C}, f(a+b i)=a-b i \quad(a, b \in \mathbb{R})$
c) $f: \mathbb{C} \rightarrow \mathbb{C}, f(a+b i)=a \quad(a, b \in \mathbb{R})$
d) $f: \mathbb{Z}[\sqrt{2}] \rightarrow \mathbb{Z}[\sqrt{3}], f(a+b \sqrt{2})=a+b \sqrt{3} \quad(a, b \in \mathbb{Z})$
e) $f: \mathbb{Z}[i] \rightarrow \mathbb{Z} / n, f(a+b i)=a+2 b$. (Hint: Your answer should depend on n.)
4. Let $\mathbb{H}=$ \{quaternions $a+b i+c j+d k \mid a, b, c, d \in \mathbb{R}\}$, with multiplication $i^{2}=j^{2}=$ $k^{2}=-1, i j=k, j k=i, k i=j, j i=-k, k j=-i, i k=-j$.
a) For $\alpha=a+b i+c j+d k \in \mathbb{H}$, define the conjugate $\bar{\alpha}=a-b i-c j-d k$, and define the absolute value $|\alpha|=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}$ (non-negative square root). Show that $|\alpha|^{2}=\alpha \bar{\alpha}$ and that $\overline{\alpha \beta}=\bar{\beta} \bar{\alpha}$. Conclude that $|\alpha \beta|=|\alpha||\beta|$. Also, find all α such that $|\alpha|=0$.
b) Does \mathbb{H} have any (non-zero) zero-divisors? (Hint: Use part (a).)
c) Is \mathbb{H} a division ring? a field?
5. Let $R_{1}=\mathbb{R}[[x]]=$ the ring of formal power series $\sum_{i=0}^{\infty} a_{i} x^{i}$ in x, and let $R_{2}=$ $\mathbb{R}\{x\}=$ the ring of convergent power series in x (i.e. power series with a positive radius of convergence).
a) Show that R_{1} and R_{2} are integral domains. [Hint: For $f=\sum_{i=n}^{\infty} a_{i} x^{i}$ (with $n \geq 0$ and $a_{n} \neq 0$), define the order of f to be the integer $\operatorname{ord}(f)=n$. Define $\operatorname{ord}(0)=\infty$. What is $\operatorname{ord}(f \cdot g)$?]
b) Find all units in R_{i}.
c) Show that the set of non-units is a principal ideal (f) of R_{i}, for some $f \in R_{i}$. Find f explicitly, and show that $R_{i}[1 / f]$ is a field.

