Math 602

1. Show that $M_n(D)$ has no non-trivial two-sided ideals, for any division ring D.

2. a) Define the Euclidean algorithm as follows. Given non-zero integers a and b, write $a = bq_0 + r_0$ as in the division algorithm (i.e. $0 \le r_0 < |b|$); then continue: $b = r_0q_1 + r_1$, $r_0 = r_1q_2 + r_2$, $r_1 = r_2q_3 + r_3$, etc. (with $0 \le r_{i+1} < |r_i|$). Show that eventually some $r_{n+1} = 0$, and that r_n is the g.c.d. of a and b.

- b) Use this to find the g.c.d. of 1155 and 651.
- c) Verify, in the calculations of part (b), that (in the notation of (a)),

$$\frac{1155}{651} = q_0 + \frac{1}{q_1 + \frac{1}{q_2 + \frac{1}{\dots + \frac{1}{q_{n+1}}}}}$$

Also verify in these calculations that if we write

$$q_0 + \frac{1}{q_1 + \frac{1}{q_2 + \frac{1}{\dots + \frac{1}{q_n}}}} = \frac{x}{y}$$

in lowest terms, then x, y form a solution to the Diophantine equation 651x - 1155y = d, where $d = \gcd(1155, 651)$. Can solutions to other equations be found in this way? Explore.

3. a) Show that if $m \in \mathbb{Z}$ and $x^2 - m$ has no root in \mathbb{Z} , then $x^2 - m$ has no root in \mathbb{Q} . [Hint: Generalize the proof that $\sqrt{2}$ is irrational.]

b) More generally, show that if $a_0, a_1, \ldots, a_{n-1} \in \mathbb{Z}$, and if the polynomial $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ has no root in \mathbb{Z} , then it has no root in \mathbb{Q} .

c) What if, in part (b), the polynomial $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ (for some integers a_0, a_1, \ldots, a_n) is considered instead?

4. a) Describe the maximal ideals in each of the following rings: $(\mathbb{Z}/2)[x]$, $\mathbb{C}[x, y, z, t]$, $\mathbb{R}[[x]]$, $\mathbb{Z}_{(2)}$, $\mathbb{Z}[1/15]$, $\mathbb{Z}/15$, $\mathbb{C}[x, y]/(y^2 - x^3)$, $\mathbb{R} \times \mathbb{R}$, $\mathbb{C}[x]/(x^2)$, $\mathbb{Q}[i]$, $\mathbb{Q}[\pi]$.

b) Describe all the units (invertible elements) in these rings, and also in the rings $\mathbb{Z}[[x]], \mathbb{Z}[i], \mathbb{Z}[x, y], \text{ and } \mathbb{Z} \times \mathbb{Z}$. Which have only finitely many units?

5. Let p be a prime number and let n be a positive integer such that $p \equiv 1 \pmod{n}$.

a) Show that the map $\phi_n : (\mathbb{Z}/p)^{\times} \to (\mathbb{Z}/p)^{\times}$, given by $\phi(x) = x^n$, is exactly *n*-to-one. (Here, $(\mathbb{Z}/p)^{\times}$ denotes the multiplicative group of units in the ring \mathbb{Z}/p .)

b) Deduce that there are exactly $\frac{p-1}{n}$ elements of $(\mathbb{Z}/p)^{\times}$ that are *n*th powers.

c) What happens if instead the congruence hypothesis is dropped?