1. Show that $M_{n}(D)$ has no non-trivial two-sided ideals, for any division ring D.
2. a) Define the Euclidean algorithm as follows. Given non-zero integers a and b, write $a=b q_{0}+r_{0}$ as in the division algorithm (i.e. $0 \leq r_{0}<|b|$); then continue: $b=r_{0} q_{1}+r_{1}$, $r_{0}=r_{1} q_{2}+r_{2}, r_{1}=r_{2} q_{3}+r_{3}$, etc. (with $0 \leq r_{i+1}<\left|r_{i}\right|$). Show that eventually some $r_{n+1}=0$, and that r_{n} is the g.c.d. of a and b.
b) Use this to find the g.c.d. of 1155 and 651.
c) Verify, in the calculations of part (b), that (in the notation of (a)),

$$
\frac{1155}{651}=q_{0}+\frac{1}{q_{1}+\frac{1}{q_{2}+\frac{1}{\cdots+\frac{1}{q_{n+1}}}}} .
$$

Also verify in these calculations that if we write

$$
q_{0}+\frac{1}{q_{1}+\frac{1}{q_{2}+\frac{1}{\ldots+\frac{1}{q_{n}}}}}=\frac{x}{y}
$$

in lowest terms, then x, y form a solution to the Diophantine equation $651 x-1155 y=d$, where $d=\operatorname{gcd}(1155,651)$. Can solutions to other equations be found in this way? Explore.
3. a) Show that if $m \in \mathbb{Z}$ and $x^{2}-m$ has no root in \mathbb{Z}, then $x^{2}-m$ has no root in \mathbb{Q}. [Hint: Generalize the proof that $\sqrt{2}$ is irrational.]
b) More generally, show that if $a_{0}, a_{1}, \ldots, a_{n-1} \in \mathbb{Z}$, and if the polynomial $f(x)=$ $x^{n}+a_{n-1} x^{n-1}+\cdots a_{1} x+a_{0}$ has no root in \mathbb{Z}, then it has no root in \mathbb{Q}.
c) What if, in part (b), the polynomial $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots a_{1} x+a_{0}$ (for some integers $\left.a_{0}, a_{1}, \ldots, a_{n}\right)$ is considered instead?
4. a) Describe the maximal ideals in each of the following rings: $(\mathbb{Z} / 2)[x], \mathbb{C}[x, y, z, t]$, $\mathbb{R}[[x]], \mathbb{Z}_{(2)}, \mathbb{Z}[1 / 15], \mathbb{Z} / 15, \mathbb{C}[x, y] /\left(y^{2}-x^{3}\right), \mathbb{R} \times \mathbb{R}, \mathbb{C}[x] /\left(x^{2}\right), \mathbb{Q}[i], \mathbb{Q}[\pi]$.
b) Describe all the units (invertible elements) in these rings, and also in the rings $\mathbb{Z}[[x]], \mathbb{Z}[i], \mathbb{Z}[x, y]$, and $\mathbb{Z} \times \mathbb{Z}$. Which have only finitely many units?
5. Let p be a prime number and let n be a positive integer such that $p \equiv 1(\bmod n)$.
a) Show that the $\operatorname{map} \phi_{n}:(\mathbb{Z} / p)^{\times} \rightarrow(\mathbb{Z} / p)^{\times}$, given by $\phi(x)=x^{n}$, is exactly n-to-one. (Here, $(\mathbb{Z} / p)^{\times}$denotes the multiplicative group of units in the ring \mathbb{Z} / p.)
b) Deduce that there are exactly $\frac{p-1}{n}$ elements of $(\mathbb{Z} / p)^{\times}$that are nth powers.
c) What happens if instead the congruence hypothesis is dropped?

