1. Let $p>2$ be a prime number, and let $f(x)=x^{\frac{p-1}{2}}-1$.
a) Show that every square in $(\mathbb{Z} / p)^{\times}$is a root of $f(x) \in(\mathbb{Z} / p)[x]$.
b) Deduce that $f(x)=\prod_{i=1}^{r}\left(x-a_{i}\right)$, where $\left\{a_{1}, \ldots, a_{r}\right\}$ is the set of squares in $(\mathbb{Z} / p)^{\times}$. [Hint: See PS 8 problem 5.]
c) Show that -1 is a square in $(\mathbb{Z} / p)^{\times}$if and only if $p \equiv 1(\bmod 4)$. [Hint: $f(-1)=$?]
2. a) Which of the following elements of $\mathbb{Z}[i]$ can be factored non-trivially? For each one that can be, do so explicitly. $2,3,5,7,11,13,15,3 i, 5 i, 2+i, 3+i$
b) Let $\alpha \in \mathbb{Z}[i]$. Recall that its norm is $N(\alpha)=\alpha \bar{\alpha}$. Show that if $N(\alpha)$ is prime in \mathbb{Z} then α is prime in $\mathbb{Z}[i]$.
c) Show that the converse fails. [Hint: part (a).]
3. Let $p>0$ be a prime number in \mathbb{Z}.
a) Show that if $p \equiv 1(\bmod 4)$ then p is not prime in $\mathbb{Z}[i]$, but instead splits as the product of two distinct primes. [Hint: By problem 1(c), $p \mid\left(a^{2}+1\right)$ for some a; if p remained prime in $\mathbb{Z}[i]$ show $p \mid a \pm i$ and obtain a contradiction. For the second assertion, use norms.]
b) Show that if $p \equiv 3(\bmod 4)$ then p remains prime in $\mathbb{Z}[i]$. [Hint: If $p=\alpha \beta$, then $N(\alpha)=p$. Can p be the sum of two squares?]
c) Show that if $p=2$ then up to multiplication by a unit, p is the square of a prime in $\mathbb{Z}[i]$.
4. Suppose α is prime in $\mathbb{Z}[i]$, and let $p_{1} \cdots p_{r}$ be the prime factorization of $N(\alpha)$ in \mathbb{Z}.
a) Show that $\alpha \mid p_{j}$ for some j.
b) Deduce that if $\alpha \notin \mathbb{Z} \cup i \mathbb{Z}$, then $N(\alpha)$ is prime. [Hint: Show $p_{j}=\alpha \beta$ with neither factor a unit, and then take norms.]
5. Show that $\alpha \in \mathbb{Z}[i]$ is prime if and only if either
(i) $\alpha=\varepsilon p$ where $\varepsilon \in\{ \pm 1, \pm i\}$ and $p>0$ is a prime in \mathbb{Z} with $p \equiv 3(\bmod 4)$; or
(ii) $N(\alpha)$ is prime in \mathbb{Z}.
[Hint: Use problems 3 and 4.] Compare with your computations in problem 2(a).
