1. a) If V and W are vector spaces over a field K, and if $F: V \rightarrow W$ is a homomorphism, let $F^{*}: W^{*} \rightarrow V^{*}$ be the map on dual spaces given by $F^{*}(\phi)=\phi \circ F$. Show that $F \mapsto F^{*}$ defines a homomorphism $\operatorname{Hom}(V, W) \rightarrow \operatorname{Hom}\left(W^{*}, V^{*}\right)$. Show that this homomorphism is natural, in the sense that $(F \circ G)^{*}=G^{*} \circ F^{*}$ if $F: V \rightarrow W$ and $G: U \rightarrow V$.
b) Show that the above map $\operatorname{Hom}(V, W) \rightarrow \operatorname{Hom}\left(W^{*}, V^{*}\right)$ is an isomorphism if V and W are finite dimensional.
c) Show that if $0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$ is exact, then so is $0 \rightarrow W^{*} \rightarrow V^{*} \rightarrow U^{*} \rightarrow 0$.
d) What if instead we consider modules over a ring R ?
2. For any finite dimensional vector space V with basis $B=\left\{e_{1}, \ldots, e_{n}\right\}$, and dual basis $B^{*}=\left\{\delta_{1}, \ldots, \delta_{n}\right\}$ of V^{*}, define $\phi_{V, B}: V \rightarrow V^{*}$ by $\sum_{1}^{n} a_{i} e_{i} \mapsto \sum_{1}^{n} a_{i} \delta_{i}$, and let $\psi_{V, B}=$ $\phi_{V^{*}, B^{*}} \circ \phi_{V, B}$.
a) Show that $\phi_{V, B}: V \rightarrow V^{*}$ is an isomorphism, but that it depends on the choice of B.
b) Show that $\psi_{V, B}: V \rightarrow V^{* *}$ is an isomorphism that is independent of the choice of B (so we may denote it by ψ_{V}). For $v \in V$, show that $\psi_{V}(v)$ is the element of $V^{* *}$ taking $f \in V^{*}$ to $f(v)$.
c) Show that the association $V \mapsto \psi_{V}$ is natural in the following sense: If $F: V \rightarrow W$ is a vector space homomorphism with induced homomorphisms $F^{*}: W^{*} \rightarrow V^{*}$ and $F^{* *}$: $V^{* *} \rightarrow W^{* *}$ (notation as in problem 1), then $\psi_{W} \circ F=F^{* *} \circ \psi_{V}$.
3. Let V, W, Y be finite dimensional vector spaces over K.
a) Show that there are natural isomorphisms $(V \otimes W)^{*}=V^{*} \otimes W^{*}=\operatorname{Hom}\left(V, W^{*}\right)=$ $\operatorname{Hom}\left(W, V^{*}\right)$.
b) Show that there is a natural isomorphism $\operatorname{Hom}(V \otimes W, Y)=\operatorname{Hom}(V, \operatorname{Hom}(W, Y))$.
c) Show that $\operatorname{Hom}(V \otimes W, Y)$ is naturally isomorphic to the vector space of bilinear maps $V \times W \rightarrow Y$.
4. a) Let V be a K-vector space and let $0 \rightarrow W^{\prime} \rightarrow W \rightarrow W^{\prime \prime} \rightarrow 0$ be an exact sequence of K vector spaces. Show that the induced sequences $0 \rightarrow V \otimes W^{\prime} \rightarrow V \otimes W \rightarrow V \otimes W^{\prime \prime} \rightarrow 0 ; 0 \rightarrow$ $\operatorname{Hom}\left(V, W^{\prime}\right) \rightarrow \operatorname{Hom}(V, W) \rightarrow \operatorname{Hom}\left(V, W^{\prime \prime}\right) \rightarrow 0$; and $0 \rightarrow \operatorname{Hom}\left(W^{\prime \prime}, V\right) \rightarrow \operatorname{Hom}(W, V) \rightarrow$ $\operatorname{Hom}\left(W^{\prime}, V\right) \rightarrow 0$ are also exact. [Hint: Choose a basis for V.]
b) What if instead we consider modules over a ring R ?
5. Let V be a finite dimensional vector space over a field K of characteristic zero, and let $T \in$ End V. A subspace $W \subseteq V$ is T-invariant if $T(W) \subseteq W$; and W is T-irreducible if it is T-invariant and the only T-invariant subspaces of W are 0 and W.
a) Suppose that $T \in \operatorname{End}(V)$ has order n in $\operatorname{End}(V)$ under composition, and that $W \subseteq V$ is a T-invariant subspace. Show that W has a T-invariant complement W^{\prime}. [Hint: Pick an arbitrary complement $W^{\prime \prime}$, i.e. $V=W \times W^{\prime \prime}$. Let $P: V=W \times W^{\prime \prime} \rightarrow W$ be the first projection map, and define $S: V \rightarrow V$ by $v \mapsto \frac{1}{n} \sum_{i=0}^{n-1} T^{i} P T^{-i}(v)$. Show $S^{2}=S$. Then consider $\operatorname{ker} S$ and $\operatorname{im} S$.]
b) Under the hypotheses of (a), show that V can be written as the direct product of T-irreducible subspaces.
c) What if T does not have finite order in $\operatorname{End}(V)$?
d) What if K does not have characteristic zero?
