1. Call $T \in \operatorname{End}(V)$ an idempotent if $T^{2}=T$. Show that if V is finite dimensional and T is an idempotent, then there are subspaces $X, Y \subset V$ such that $V=X \times Y,\left.T\right|_{X}=0$, $\left.T\right|_{Y}=$ identity. Deduce that with respect to some basis of V, the idempotent map T is given by a diagonal matrix whose diagonal entries are of the form $(1,1, \ldots, 1,0,0, \ldots, 0)$.
2. a) For K a field, suppose that $A \in M_{n}(K)$ is strictly upper triangular (i.e. A is upper triangular, and the diagonal entries are all 0). Show that A is nilpotent, and find the index of nilpotence (i.e. the minimal m such that $A^{m}=0$).
b) Show that if S and T are upper triangular, then their bracket $[S, T]:=S T-T S$ is nilpotent.
c) Let A_{0} be the set of upper triangular matrices in $M_{n}(K)$. Show that A_{0} is a Lie algebra, in the sense that it is closed under addition, scalar multiplication, and bracket. Also, inductively define A_{i} by $A_{i+1}=\left[A_{i}, A_{i}\right]=\left\langle[S, T] \mid S, T \in A_{i}\right\rangle$. Show that some $A_{r}=0 .\left(A_{0}\right.$ is thus called solvable, in analogy with the fact that a finite group is solvable iff its successive commutators terminate in the trivial group.)
3. Let V be a vector space and let $G \subseteq$ Aut V be a finite subgroup. Say that $W \subseteq V$ is G-invariant if it is T-invariant for every $T \in G$. Say that $W \subseteq V$ is G-irreducible if W is G-invariant and the only G-invariant subspaces of W are 0 and W.
a) If V is a finite dimensional vector space over a field of characteristic zero, show that V can be written as the direct product of G-irreducible subspaces. [Hint: Generalize the argument in problem 5 of PS11.]
b) What can you say about the conclusion of part (a) if the field of scalars is not necessarily of characteristic zero?
4. Let R be the ring of polynomial functions on the unit sphere $S^{2} \subset \mathbb{R}^{3}$. Thus this ring is given by $R=\mathbb{R}[x, y, z] /\left(x^{2}+y^{2}+z^{2}-1\right)$.
a) Let $P=(0,0,1) \in S^{2}$, and let $R_{P}=\left\{\left.\frac{f}{g} \right\rvert\, f, g \in R ; g(P) \neq 0\right\}$. Show directly that R_{P} is a local ring (i.e. has exactly one maximal ideal I), and find a set of generators for I.
b) Show that $I^{2} \subset I$ but that $I^{2} \neq I$. Let I / I^{2} be the image of I under the ring homomorphism $R_{P} \rightarrow R_{P} / I^{2}$. Show that I / I^{2} is a 2 -dimensional vector space over \mathbb{R}. [Hint: Find a basis, using that $z-1=\frac{-1}{z+1} \cdot\left(x^{2}+y^{2}\right) \in I^{2}$.]
5. In the situation of problem 4:
a) Let $T \subset \mathbb{R}^{3}$ be the tangent plane to S^{2} at P. Thus $T=\{(x, y, 1) \mid x, y \in \mathbb{R}\}$. Show that T is a 2-dimensional vector space over \mathbb{R}, under the addition $(x, y, 1)+\left(x^{\prime}, y^{\prime}, 1\right)=$ $\left(x+x^{\prime}, y+y^{\prime}, 1\right)$ and scalar multiplication $c(x, y, 1)=(c x, c y, 1)$. What is the 0 -vector?
b) Let $f \in T^{*}$, the dual space of T. Show that $f: T \rightarrow \mathbb{R}$ extends to a unique linear functional $\tilde{f}: \mathbb{R}^{3} \rightarrow \mathbb{R}$. Let $\bar{f}: S^{2} \rightarrow \mathbb{R}$ be the restriction of \tilde{f} to S^{2}. Show that $\bar{f} \in R$, and moreover $\bar{f} \in I$.
c) If $f \in T^{*}$, let $\phi(f) \in I / I^{2}$ be the image of $\bar{f} \in I$ under $I \rightarrow I / I^{2}$. Show that $\phi: T^{*} \rightarrow I / I^{2}$ is an isomorphism of vector spaces.
d) Conclude that T is isomorphic to $\left(I / I^{2}\right)^{*}$ via ϕ^{*}.

Remark. This problem works more generally for any smooth space $S \subseteq \mathbb{R}^{n}$ defined by polynomials. Often, geometers turn this problem on its head and define the tangent space to be $\left(I / I^{2}\right)^{*}$. The advantage is that this makes T intrinsic to S, rather than depending on the way that S is embedded in \mathbb{R}^{n}.

