Math 602

Sample Exam

For each of the following, either give an example, or else explain why none exists.

- 1. A finite group that is solvable but not nilpotent.
- 2. A group of order 40 with no subgroup of order 4.
- 3. A non-abelian group of order 55.
- 4. A non-split short exact sequence of finite groups.
- 5. A finite abelian group whose automorphism group is non-abelian.
- 6. A simple group of order 250.
- 7. A non-principal ideal in an integral domain.
- 8. A non-trivial proper left ideal in $M_3(\mathbb{F}_5)$ (i.e. 3×3 matrices over $\mathbb{F}_5 = \mathbb{Z}/5\mathbb{Z}$).
- 9. A unique factorization domain of Krull dimension 4.
- 10. A maximal ideal in $\mathbb{Q}[x,y]/(x^3+y^3-1)$ whose residue field is not isomorphic to \mathbb{Q} .
- 11. A commutative ring that is not an integral domain, and whose nilradical is trivial.
- 12. A set of eight linearly independent vectors in $\mathbb{R}^3 \otimes \mathbb{R}^4$.

13. A natural isomorphism $V^* \otimes_F W \to \text{Hom}(V, W)$, where V, W are finite dimensional vector spaces over a field F.

14. A non-zero homomorphism $V \to W$ of finite dimensional vector spaces over a field F together with a non-zero finite dimensional F-vector space Z such that the induced map $\operatorname{Hom}(Z, V) \to \operatorname{Hom}(Z, W)$ is the zero map.

15. A commutative ring R and an R-module M that does not have a basis over R.