Topics in Algebra – Math 702

Problem Set #1

Due Wed., Feb. 26, 2020, in class.

1. Let r be a positive integer and let F be a field (as usual, of characteristic $\neq 2$). Show that the following two conditions are equivalent:

(i) Every regular quadratic form in r variables over F is universal.

(ii) Every regular quadratic form in r + 1 variables over F is isotropic.

2. Let q be a regular quadratic form on $V = F^n$, corresponding to the invertible $n \times n$ symmetric matrix M. For $A \in M_n(F)$, define $\tau(A) = M^{-1}A^{t}M$, where A^{t} is the transpose of A.

a) Show that τ is an *involution* on $M_n(F)$, in the sense that $\tau(A+B) = \tau(A) + \tau(B)$; τ^2 is the identity; and $\tau(AB) = \tau(B)\tau(A)$.

b) Show that

$$O(q) = \{A \in GL_n(F) \mid \tau(A) = A^{-1}\},\$$

and deduce that

$$SO(q) = \{ A \in SL_n(F) \mid \tau(A) = A^{-1} \}.$$

Explain why these equalities are familiar in the case that $q = \sum x_i^2$.

c) Let

$$\operatorname{Skew}(q) = \{ A \in \operatorname{M}_n(F) \mid \tau(A) = -A \}.$$

What is Skew(q) if $q = \sum x_i^2$?

d) View SO(q) and Skew(q) as subsets of affine n^2 -space \mathbb{A}^{n^2} (where we identify $M_n(F)$ with F^{n^2}). Show that each can be defined as the locus of common zeroes of a set of polynomials in n^2 variables; i.e., is a subvariety of \mathbb{A}^{n^2} . Is either one isomorphic to some affine *m*-space \mathbb{A}^m ?

3. Retain the notation of problem 2.

a) Suppose that $A \in \operatorname{GL}_n(F)$ and that -1 is not an eigenvalue of A. Show that A + I is invertible (where I is the identity).

b) If A is as in part (a), let $B = (A + I)^{-1}(A - I)$. Show that 1 is not an eigenvalue of B and that I - B is invertible. Show also that $A = (I + B)(I - B)^{-1}$.

c) In the situation of part (b), show that if $A \in SO(q)$ then $B \in Skew(q)$, and conversely.

d) Let

$$SO(q)^{\circ} = \{A \in SO(q) \mid A + I \in GL_n(F)\}$$

and let

$$\operatorname{Skew}(q)^{\circ} = \{A \in \operatorname{Skew}(q) \mid I - B \in \operatorname{GL}_n(F)\}$$

Show that the association $A \mapsto B$ as above defines a bijection $C : \mathcal{O}(q)^{\circ} \to \operatorname{Skew}(q)^{\circ}$. Show moreover that the maps C and C^{-1} are defined by systems of polynomials in n^2 variables (i.e. they define an isomorphism of varieties).

e) Show that there is a polynomial in n^2 variables that does not vanish identically on SO(q) and such that SO(q)° is the complement in SO(q) of the zero locus of this polynomial. Do the same for Skew(q)° in Skew(q). f) Deduce that some dense open subset of SO(q) is isomorphic to a dense open subset of some affine space \mathbb{A}^m (in the Zariski topology). In algebraic geometry, one then says that SO(q) is a *rational variety*; its field of rational function is then isomorphic to the corresponding field for \mathbb{A}^m , i.e. $F(t_1, \ldots, t_m)$.

4. Let $F = \mathbb{C}((t))$.

a) Show that F^{\times}/F^{\times^2} has exactly two elements, represented by $\{1, t\}$. [Hint: Show that if $f \in \mathbb{C}[[t]]$ has a non-zero constant term, then f is a square.]

b) Show that every binary quadratic form over F is universal. [Hint: Use part (a) to reduce to just a few possibilities.]

c) Deduce that u(F) = 2.

d) Describe the structure of W(F), Q(F), I(F), and $I^2(F)$.