Due Wed., Feb. 26, 2020, in class.

1. Let r be a positive integer and let F be a field (as usual, of characteristic $\neq 2$). Show that the following two conditions are equivalent:
(i) Every regular quadratic form in r variables over F is universal.
(ii) Every regular quadratic form in $r+1$ variables over F is isotropic.
2. Let q be a regular quadratic form on $V=F^{n}$, corresponding to the invertible $n \times n$ symmetric matrix M. For $A \in \mathrm{M}_{n}(F)$, define $\tau(A)=M^{-1} A^{\mathrm{t}} M$, where A^{t} is the transpose of A.
a) Show that τ is an involution on $\mathrm{M}_{n}(F)$, in the sense that $\tau(A+B)=\tau(A)+\tau(B)$; τ^{2} is the identity; and $\tau(A B)=\tau(B) \tau(A)$.
b) Show that

$$
\mathrm{O}(q)=\left\{A \in \mathrm{GL}_{n}(F) \mid \tau(A)=A^{-1}\right\}
$$

and deduce that

$$
\mathrm{SO}(q)=\left\{A \in \mathrm{SL}_{n}(F) \mid \tau(A)=A^{-1}\right\}
$$

Explain why these equalities are familiar in the case that $q=\sum x_{i}^{2}$.
c) Let

$$
\operatorname{Skew}(q)=\left\{A \in \mathrm{M}_{n}(F) \mid \tau(A)=-A\right\} .
$$

What is $\operatorname{Skew}(q)$ if $q=\sum x_{i}^{2}$?
d) View $\operatorname{SO}(q)$ and $\operatorname{Skew}(q)$ as subsets of affine n^{2}-space $\mathbb{A}^{n^{2}}$ (where we identify $\mathrm{M}_{n}(F)$ with $F^{n^{2}}$). Show that each can be defined as the locus of common zeroes of a set of polynomials in n^{2} variables; i.e., is a subvariety of $\mathbb{A}^{n^{2}}$. Is either one isomorphic to some affine m-space \mathbb{A}^{m} ?
3. Retain the notation of problem 2.
a) Suppose that $A \in \mathrm{GL}_{n}(F)$ and that -1 is not an eigenvalue of A. Show that $A+I$ is invertible (where I is the identity).
b) If A is as in part (a), let $B=(A+I)^{-1}(A-I)$. Show that 1 is not an eigenvalue of B and that $I-B$ is invertible. Show also that $A=(I+B)(I-B)^{-1}$.
c) In the situation of part (b), show that if $A \in \operatorname{SO}(q)$ then $B \in \operatorname{Skew}(q)$, and conversely.
d) Let

$$
\mathrm{SO}(q)^{\circ}=\left\{A \in \mathrm{SO}(q) \mid A+I \in \mathrm{GL}_{n}(F)\right\}
$$

and let

$$
\operatorname{Skew}(q)^{\circ}=\left\{A \in \operatorname{Skew}(q) \mid I-B \in \mathrm{GL}_{n}(F)\right\}
$$

Show that the association $A \mapsto B$ as above defines a bijection $C: \mathrm{O}(q)^{\circ} \rightarrow \operatorname{Skew}(q)^{\circ}$. Show moreover that the maps C and C^{-1} are defined by systems of polynomials in n^{2} variables (i.e. they define an isomorphism of varieties).
e) Show that there is a polynomial in n^{2} variables that does not vanish identically on $\mathrm{SO}(q)$ and such that $\mathrm{SO}(q)^{\circ}$ is the complement in $\mathrm{SO}(q)$ of the zero locus of this polynomial. Do the same for $\operatorname{Skew}(q)^{\circ}$ in $\operatorname{Skew}(q)$.
f) Deduce that some dense open subset of $\mathrm{SO}(q)$ is isomorphic to a dense open subset of some affine space \mathbb{A}^{m} (in the Zariski topology). In algebraic geometry, one then says that $\mathrm{SO}(q)$ is a rational variety; its field of rational function is then isomorphic to the corresponding field for \mathbb{A}^{m}, i.e. $F\left(t_{1}, \ldots, t_{m}\right)$.
4. Let $F=\mathbb{C}((t))$.
a) Show that $F^{\times} / F^{\times 2}$ has exactly two elements, represented by $\{1, t\}$. [Hint: Show that if $f \in \mathbb{C}[[t]]$ has a non-zero constant term, then f is a square.]
b) Show that every binary quadratic form over F is universal. [Hint: Use part (a) to reduce to just a few possibilities.]
c) Deduce that $u(F)=2$.
d) Describe the structure of $W(F), Q(F), I(F)$, and $I^{2}(F)$.

