Recall:
$$R \subset F$$
, $m = (\pi) \subset R$
 $cdvr \quad cdvf \quad R/m = h$
 $der \neq 2$
 $(i,j): W(L) \oplus W(L) \longrightarrow W(F)$.
Inverse
 $(\partial_i, \partial_2): W(F) \longrightarrow W(L) \oplus W(L)$
 $u(F) = 2u(L)$
 $S_{\circ} \quad if F is e local field, $u(F) = 4$
 $F also \quad fW(F)l = 16$
For $F local, here \quad Hilbert \quad symbol: '$
 $(q, b)_F = \pm 1; = 1 \iff (\frac{q, b}{F}) splits,$
 $\bigotimes (q, 5)_F = \pm 1; = 1 \iff (\frac{q, b}{F}) splits,$$

The next result is useful in Under standing the Chilbert symbol — in particular showing that it is a non-dagement pairing:

Apply ins this, we get Cor the Hilbert Symbol is a non-degreethe pairing: no nontrivial class always pairs trivially. I.c. Vy & F* Fx? $\exists z \in F^{\times} st (y, z)_{F} = -1$ 7 in the guaternim elg $\begin{pmatrix} y_1k\\ F \end{pmatrix}$ is not split

Proof Sinia <1, -4, -17, with is misotropic, So is the subform q'= <-4,-TT, TT) det g = 1 eF / Fx2, so the prop. Shows g reps every Square class except -1. Since y is not a square, yfleFiFr 50 - y = -1 e F*/F*, 50 9 19. - y. : g = <-y> 1 9'. But dot g = ! : lat q' = - y eF"/F" q'= <-2, yz) dim 9=3=1 din g'= 2 (zeF*) $S_0 < -u, -\pi) u\pi > = q \cong < -271q' \not\in < -2, 222$ So <1, -4, -1) いかデビ <1, -7, -3, y 2> Norm form of $\left(\frac{u,\pi}{F}\right)$ Norm form of $\left(\frac{y,t}{F}\right)$ $: \left(\frac{2}{F}\right) \stackrel{\simeq}{=} \left(\frac{u,\pi}{F}\right); s_{\circ} \left(\frac{y,t}{F}\right)_{F} = \left(u,\pi\right)_{F} = -i,$ Above results assumed char h #2. But if F = Q2 or a finite extension, then ches F = 0 but ches h = 2. Can carry over these results to this Sitietin, though proofs are more complicated.

Ex. In Q2, there are eight Squere classes, forming (2/2)3; given by (-1)²2²5⁴, i, Le 30, 13. (Cem, ChVI,) Co- 2.24 More generally for a finite extension FIQL, let $S = \nabla(2) \ge 1$ (2 is not Aec. a withmite) Let g = /hl; a power of 2. Let g = /hl; a power of 2. Then $|F^*/F^{*2}| = 4g^s = 8$. 2^{n+2} if $[F:Q_2] = n$ $(g=2^f, s=e, s q^s = 2^{el} = 2^n)$ Re Hilbert symbol: (Lan, CUI, Co-2.28) If xizeU= Z2, then $(x_{1}y)_{1} = (-1)^{\frac{x-1}{2}} = (-1)^{\frac{y-1}{2}}, (2,y)_{2} = (-1)^{\frac{y-1}{2}}$ (Compare to quadratic reciprocity)

Also get structure of W(F) for 2- adic fields F (Lam, ChopV), Thu 2.29):

Sig
$$f$$
 dogree n extension
Q2
Recall $|F'/F^{*}| = 2^{m}$, $m \ge 3$. Then
Rs a group,
1) $|f -1 \in F^{*2}$ then $W(f) = \mathbb{C}(2)^{n+2}$.
2) $Seg - 1 \notin F^{*}$.
a) $|f -1| is a sum of two sinces, then
 $W(f) = \mathbb{C}/y \mathbb{C}/\mathbb{C}/y^{n-2}$.
b) Otherwise, $W(F) = \mathbb{C}/8 \oplus \mathbb{C}/2/2^{n-1}$.
In each case, $|W(F)| = 2^{n+2}$
 $= 2^{n+4}$.
So 2^{n+4} anisodropic $p.f.'s$ in F_{-}
up to isometry.$

Local - global principles for global fields:
esp. Harse - Minkowseki Theorem
F a global field, 8 a g.f. 1F.
The: g isotropic/F
$$rest g$$
 isotropic/even for.
I al file
Equivaluations
ganisotropic/F $rest f$ anisotropic/some for.
Ganisotropic/F $rest f$ anisotropic/some for.
Ex. F = Q, Completen: Qp Hpain P, and R
with 1/p lush draw
to the own Fp.
Completensis Ff. with 1/lp, to with 1/lo
point on to line $rest f$ for a projective
to invidential
point on to line $rest f$ for a projective
for fet, $F_f = F_p(t)$; pt of
 $f = F_p(t) = rest f$ for a projective
for fet, $F_f = F_p(t)$; pt of
 $f = F_p(t) = rest f$ for a projective
for fet, $F_f = F_p(t)$; pt of
 $f = F_p(t) = rest f$ for $rest f$ for $rest f$ for
 $f = F_p(t) = rest f$ for $rest f$ for $rest f$ for
 $f = rest f = F_p(t)$; pt of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = rest f = F_p(t)$; point of
 $f = res$

Pf. Either side implies din 7 = din g! If this holds, the: q ≅ q' /E (F) g, g' define the Same Class in W(F) G g ⊥ <- i>g' is trivial in Gr (F), i.e. is hyperbolic /F g 1 <- Dg' is hyperbolic / all For pro Gr Cogeg' /all Fr. Con Given 8, 8' IF, g ≡ g' /F ⊂ (i) ding= dim g' (ii) det g = det g' eF*/F* ((iii) (a) S(gm) = S(gm) for every discrete valuation vom F. Hasse invariant. For g= < a, - 5~?, $S(q) = \prod_{i=1}^{T} \left(\frac{Q_i, Q_i}{F} \right) \in B_r(F)$ (b) Sign (god = Sign (god) for every real abs val on F ~ Signature of a real form.

Pf. (-) is triviel. For (-); (i), (ii), (iii)(a) => $g \equiv g' / F_{r}$ for v any discrete Valuation (previous result) (c) (icil(s) =) $\gamma = \gamma' / F_{\gamma} = \mathbb{R}$ by Sylvestic Law of Inertic for real of fis. At Complex Completing, and two regular of of the Same din an isometric So: g = q' in every Frr. So done by previous Cor. C 5 global fr.fil Co-Let F be a finite extension of $F_{p}(x)$. Then u(F) = 4. Pf Say q is a of IF. If dim g 74, then & is isotopic (all Fr, Thus $u(F) \leq 4$. WTS =.

For this, wast an anisodropsi of over F of dim = 4. First Cari F = IFp (x), Since $u(F_p) = 2$, Janisotropic of Zo of din 2 our FF. Let 9 = 80 L < 2 70, 8.F./F. Let V (X); Fr= Fx = Fp((x)). (loco(sty) As a g.f. over Fr, 2, (g) = 22(g) = 80. These are anisotropic/ FFP, so gis anisotropic/Fr. i q is ancoopic over FCFM. General case: E is a finite extension of Fp(x); F= frack for Ra finite extension of Fg[x]. Ded. dom. Proceed Similarly wat a movid iled mark with uniformizer T, and finite residue field R/m.

What if F has no ved complections? - F is a fotally imaginary # field" - es Q(J-2),Q(35) Cor "fotally complex" Could Fis a fotelly imaginary # field then u(F) = 4. Pf is as for the global function field care but for archinedean absolute values, $u_{R} F_{r} \equiv \mathbb{C}, \neq u(\mathbb{C}) = 1 \leq 4.$ For other # fulls, Including Q: Cor Say dim g >4. Then! q is isotropic / F C You st Fr ER, the image of g under ForFrer is indefiniten Same pf, using: 9 LTR is (sodrapic S is inhorist, Case of Q: If din 3=4 the g is isotropic of g is indefinit In.

To handle the case of # flds that
are not totally imaginary, and some
other Sulls that have
$$u(F) = \infty$$
:
There's a varient of u :
The Elman - Lam invariant $u'(F)$:
The Sup of the drives of anisotropic
q.f.'s IF that correspond to torsion
elamets of $W(F)$.
For Q, this eliminate pas dut gf:
t nay. det. gf:. And then get
 $u'(Q) = 4$. More generally,
 $u'(F) = 4$ for all global fields.
In grant, $u'(F) = u(F)$ for any
fill F with no embedding F SR.
(See Law, Appendix to Sc of Chap XI.)

Since we can miltiply by squares & clear denominations, it sufficien to determine which integers are in this set. Use Cor of Hesse-Minkowski q reps a in Q = q reps a in Roll Q. To rup a in TR: @ 200. To my ain Qip, Pole: Every elt in Plp is a Sum of two squares, have also in QP, since P is all For Quiveculli If Fisa Non-archanide local field, +q=<q,5, 27 is an anisotropic g.f. /F of din 3, then 8 represents all the square classes of Fother than -det g.

Hoply this toge < 1, 1, 17 over Q2: get of rups every Square Class other than - 1. A unit in Zz is a square if it is El (mid 8) So a general element of Qu' is a sprane iff it is 22? (unit = 1 (mod 8)). S.: neZ Is in D(g) ⇒ n > 0 and - n ≠ 4^q (86+1). Equis: n>0 and n + 49(86-1) a,502 Ex. Which non- 0 elements in Q are Suns of 4 Squars? Again radice to Z. OK / Qp S-P==2 For R: OK iff poisitive

For Q_{2} : if $\neq 4^{Q}(86-1)$, then in $D((1,1,17)) \in D((1,1,1,1))$. If $4^{Q}(85-1)$, then $4^{Q}(85-2) + 4^{Q}$ Sun of 3 squares squares squares squares squares squares squares squares squares squares.

To prove Hasse-Minkouski : WMA q regular (otherwise isotropic (F) Proceed by induction on dim 7. Prove Cases of din g=1,2,3,4 syperately, + then start induction with dim= 5.

For din g=1: g= <a>, ato. Then g anisitopic /F and over For, I

Higher dimensional cases:

To be discussed.