Recall: $R \subset F, m=(\pi) \subset R$ cur cduf $R / m=k$ Chart 2

$$
(i, 2): W(h) \oplus W(h) \sim W(F)
$$

Inverse

$$
\begin{aligned}
& \left(\partial_{i}, \partial_{2}\right): \omega(F) \xrightarrow{\sim} w(h) \oplus \omega(l) \\
& \Rightarrow \quad u(F)=2 u(h)
\end{aligned}
$$

So if F is a loco fill, $u(F)=4$,
+also $|\omega(F)|=16$
For F local, have $H_{i l}$ beet symbol:

$$
\begin{aligned}
(a, b)_{F}= \pm 1 ;=1 & \Longleftrightarrow\left(\frac{\varepsilon, b}{F}\right)_{\text {splits, }} \\
& \Longleftrightarrow<a, b>\text { reps } 1 .
\end{aligned}
$$

The nest result is useful in under standing the Gilbert symbol - in particular showing that it is a non-dagenerot pairing;

Prop Let $q=\langle a, b, c\rangle$ be an anisotropic q.f. $/ F$ of $\operatorname{dim} 3,+\delta:=\operatorname{det} q$.

Then:i) q does not represses $-\delta$.
ii) of reprasats the other squarecksses.

Proof. Re ci): Weill prove the Contrapositive:
That if (i) fails then q is isotopic.
So suppose q represats $-\delta=-a b c$.
Then $\left\langle a_{i} b, c, a b c\right\rangle$ is isotropic; t so it contains a hyperbolic plane $h=\langle 1,-1\rangle$;
i.e. $\langle a, b, c, a b c\rangle \cong\langle 1,-1, d, e\rangle$

$$
\operatorname{det}=1 \in F^{x} / F^{x^{2}} \equiv \int_{\text {in }} F^{x}
$$

$$
\begin{aligned}
& \text { So } e=-d \in F^{-x} / F^{-x^{2}} \\
& \text { and }\langle d, e\rangle \cong\langle d,-d\rangle \\
& \cong\langle-a b c, a b c\rangle
\end{aligned}
$$

So $\langle a, b, c, a b c\rangle=\langle 1,-1,-a b c, a b c\rangle$
Witt Cancel ation $\Rightarrow\left\langle\begin{array}{c}a, b, c\rangle \\ a \\ a\end{array} \underset{\langle 1,-1,-a b\rangle\rangle}{\langle i s o t r o p i c}\right.$
isotropic

Re (ii): Say w is in a different square class than $-\delta=-a b c$. UTS: $q=\langle a, b, c\rangle$ represents u.

$$
\underset{\text { in } F^{*} / F^{2}}{\omega \neq \delta} \Rightarrow(-\delta) w \neq(-\delta)^{2}=1 \in F^{x} / F^{x^{2}}
$$

$\operatorname{det}^{\prime \prime}(\langle a, b, c,-\omega\rangle)$: not a square.
But $\langle 1,-u,-\pi, u \pi\rangle$ has square dot the only ancsotupic form of dim 4 (up to is omen)
$\therefore\langle a, b, c,-w\rangle$ is isotropic.
So $q=\langle a, b, c\rangle$ represents u.
Apply ing this, we get
Cor the Hilbert symbol is a nor-degmenere pacing: no nontrivial class, always pairs trivially.

$$
\begin{aligned}
I_{e}: & \forall y \\
& \in F^{x} \backslash F^{x^{2}} \\
& \exists z \in F^{x} \& t^{\prime}(y, z)_{F}=-1 .
\end{aligned}
$$

Proof Since. $\langle 1,-4,-\pi, 4 \pi\rangle$ is anisotropic, So is the subform $q:=\langle-a,-\pi$, ni \rangle. $\operatorname{det} q=1 \in F^{x} / F^{x^{2}}$, so the prop. shows of reps every square class except -1. Sine y is not a square, $y \neq 1 \in F^{x} / F^{x^{2}}$, so $-y \neq-1 \in F^{x} / F^{x^{2}}$, so q reps $-y$.
$\therefore q \geqslant\langle-y\rangle \perp q^{\prime}$. Bat $\operatorname{det} q=1$.
$\therefore \operatorname{det} q^{\prime}=-y \in F^{x} / F^{x^{2}}$.
$\operatorname{dim} q=3 \Rightarrow \operatorname{din} q^{\prime}=2 \Rightarrow q\left(z \in F^{x}\right)$

$$
\begin{aligned}
& \text { So }\langle-u,-\pi, u \pi\rangle=q \cong\langle-2\rangle \perp q^{\prime} \cong\langle-y,-z, y z\rangle \\
& \left.S_{0}\langle 1,-u,-\pi\rangle \pi\right\rangle \cong\langle 1,-y,-z, y z\rangle
\end{aligned}
$$

norm form of $\left(\frac{u, \pi}{F}\right)$
© norm form of $\left(\frac{y_{i} z}{p}\right)$

$$
\therefore\left(\frac{y, z}{F}\right) \cong\left(\frac{u, \pi}{F}\right) \text {; so }(y, z) F=(u, \pi)_{F}=-1 .
$$

Above results assumed cher $h \neq 2$.
But if $F=\mathbb{Q}_{2}$ or a finite extension, then char $F=0$ but cher $h=2$. Can carry over these results to this sitaction, though profs are more complicates.

Lam, Chop VI: In a hove situationi
Thm 2.10: J ! quaternio div.alg. /F,
viz. $\left(\frac{\pi, u}{F}\right)$ for a suitable unit a.
Have $R \subset F$, with unifmizer π : $\begin{aligned} & G x, \pi=2 \\ & \text { if } R=\pi\end{aligned}$
As in \#th \exists ! degree $2 \quad \begin{aligned} & \text { if } R=C_{2}, \\ & F=Q_{2}\end{aligned}$
unigu \longleftrightarrow Anramifine extensim K / F; $F=Q_{2}$)
k of dag 2 i.e. π is again a unifomizer for K.

$$
K=F(\sqrt{u}) ; \text { use this } u . \lessdot \underset{\text { kumare entension }}{\left(\text { if } F=Q_{3},\right.}
$$

Thm 2.12: $u(F)=4$.
Cor 2.15: (1) \exists ! 4 -dinil anisotropic $q f / F$,

$$
v 1 z\langle 1,-4,-\pi, 4 \pi\rangle
$$

(2) If q is anisatropi/ F of din 3 , then it does not represent - det F, but it does rapresent every othe syuare cless
Thm 2.16 The liblet symb.l/F is nowr degenerat.
Some things are different: Before we hal $1,4, \pi, 4 \pi \quad\left|F^{x}\right| F^{x^{2}} \mid=4$, for ves.cher $\neq 2$. But for res cher $=2,\left|F^{x} / F^{x^{2}}\right|>4$:

Ex. $\ln Q_{2}$, there are eight square classes, forming $\left(\mathbb{Z} /_{2}\right)^{3}$; give b_{2}
$(-1)^{i} 2^{j} 5^{h}, \quad i, 2,1 \in\{0,1\} . \quad\binom{C_{\text {em, }}, C l V 1}{,C_{0}-2.24}$
More genarily, for a fire extension F / Q_{2},
let $S=v(2) \geq 1$ (2 is not nec.a unifinià cu.)
Let $q=|k|$; a power of 2 .
Than $\left|F^{x} / F^{x^{2}}\right|=4 q_{n}^{5} \geq 8 . \quad\binom{$ Lan ch vi }{ Th. 2,22}
"" 2^{n+2} if $\left[F: Q_{2}\right]=n$
madge $\left(q=2^{f}, s=e, s^{s o} q^{s}=2^{e f f}=2^{n}\right)$
Re fillet symbol: (Can, $Q \cup V, C-2,28$)
If $x, y \in U=\mathbb{Z}_{2}{ }^{x}$, then

$$
(x, y)_{2}=(-1)^{\frac{x-1}{2} \frac{2-1}{2}}, \quad(2, y)_{2}=(-1)^{\frac{y^{2}-1}{5}}
$$

(Compare t qualrati- reciprocity)
Also got structure of $W(F)$ for
2- adic fills F
(Lam, Chop), Than 2.29):

Say 1 degree n extension
Q_{2}
Recall $\left|F^{x}\right| F^{x^{2}} \mid=2^{m}, \operatorname{man}_{n+2}^{n \geq 3}$. Then as a group,

1) If -1 $\in F^{x^{2}}$, then $W(f) \approx(\mathbb{C} / 2)^{m+2}$
2) $S_{a y-1} \notin f^{x^{2}}$.
a) If -1 is a sun of two squares, then

$$
\left.W(F)^{\cong} \cong \mathbb{Z} / 4\right)^{2} \oplus(\mathbb{C} / 2)^{m-2}
$$

b) Otherwise, $W(F)=\mathbb{Z} / 8 \oplus(\mathbb{Z} / 2)^{m-1}$

In each corse, $|W(F)|=2^{m+2}$

$$
=2^{n+4}
$$

So 2^{n+4} annsodupic tiffs is F up to isometry.

Local-global priñiples for global fields: esp. Harse - Minkowsk: Theoren

F a global fiale, q a q.f.lF.
The: q isotropiil $F \Leftrightarrow q$ isoturgic levens F_{w}. locelfice
Equivaluthts
q anisodupiclf $\Leftrightarrow q$ anisotryic/some F_{r}.
Ex. $F=\mathbb{Q}$. Corpletim: $\mathbb{Q}_{p} \quad \forall p$ ins p, a-l \mathbb{R} wortlip lusuabrvil)
Ex. $F=\mathbb{F}_{p}(t)=$ rat'l for on projective t-line our \mathbb{F}_{p}.
Completion: F_{f}, wott $1 \|_{f}, \alpha$ cort $l l_{\infty}$

Es. For $f=t, \quad F_{f}=F_{p}((t))$;
pt of

$$
\left|t^{2}+t^{3}\right|_{f}=\frac{1}{p^{2}}-\ln (t)^{2}
$$

For $f=\infty, F_{f}=\mathbb{F}_{p}\left(\left(t^{-}\right)\right)$;

$$
\left|t^{2}+t^{3}\right|_{\infty 0}=p^{2} \ll \begin{gathered}
\text { dy } 3 j \text { jolk of } \\
\text { order } 3 \text { at } \\
\hline
\end{gathered}
$$

This theorem is special for gualratic forms.
Fails for cubic forns.
$E x \cdot 3 x^{3}+4 y^{3}+5 z^{2}$ is isotropic $\angle R$ and lall \mathbb{R}_{p}
but is anisotropic $/ \mathbb{Q}$.
(Selmer curra)
Fails for quartic forms.
Ex. $\left(3 x^{2}-y z\right)^{2}+5\left(y^{2}-z x\right)^{2}-2\left(z^{2}-3 x y\right)^{2}$
is isotrpic $/ \mathbb{R}$ and all \mathbb{Q}_{p},
but ani sotripic / \mathbb{Q}. (See Lasp.120)
Relctal to obsenation:
A q.f. $q \omega$ a quadric hypersurface of dimn $Q \subset \mathbb{P}^{n-1} g$ ive by $q=0 ;$ a homageneo.s spoce under the group $O(q)$.

Some Cunsequences of Hasser Minkousk::
Con For a $q . f$ o $/ g l o b a l$ fiele F,
q is hyperbolic /F $\Longleftrightarrow q$ is hiperbilic/each F_{v} $P f$ is by indaction, asing $H-M$, Witt de compositin, t Witt Cancelletion.

Cor $i_{w}(q)=\min _{v} i_{w}\left(q_{\sim}\right)$

Witt index of q over F
(\# of h's in Wist decamp)

Wits cider of $\% / F_{n}$.
(These corollaries will be on the nest problemsat.)
Cor If $a \in F^{x}$, then
o represents a over $F \cong$
q reprusits a over each Fr.
Pf. q reps a over F
$\Longrightarrow q \perp\langle-a\rangle$ is 1 sitropic/F

$$
\Longleftrightarrow q \perp-\cdots \cdots\rangle+\cdots F_{0}
$$

q reps a over all F r.

Cur $q^{\prime} \cong q^{\prime \prime}$ over $F \Leftrightarrow q \cong q^{\prime}$ over all For.

Pf. Either side implies din $\sigma=d$ in q ! If this holes, the :

$$
q \cong q^{\prime} / F
$$

q, q^{\prime} define the same clos in $W(F)$
$q \perp<-1\rangle q^{\prime}$ is trivial in $G(F)$, ie. is hyparb.lie/F
$\Longleftrightarrow q \perp<->q^{\prime}$ is hypro,lic $/$ all F_{v}
prov Cor

$$
\Leftrightarrow q \cong q^{\prime} / a l l F_{r .}
$$

Cor Given Q, G /F, $^{\circ}$

$$
q \cong q^{\prime} / F \underset{0}{\Longrightarrow}
$$

(i) $\operatorname{din} q=\operatorname{dim} q^{\prime}$
(ii) $\operatorname{dot} q=\operatorname{det} q^{\prime} \in F^{x} / F^{x^{2}}$
(iii) (a) $S\left(q_{N}\right)=S\left(q_{n}^{\prime}\right)$ for every discrete valuotionvomF.

Hose invariant:
For $q=\left\langle a, a_{i}\right\rangle$,

$$
\begin{aligned}
& \text { For } q=\sum_{i=j}\left(\frac{a_{s}, a_{j}}{F}\right) \in \operatorname{Br}(F) \\
& S(q)
\end{aligned}
$$

(b) $\operatorname{sign}\left(q_{n}\right)=\operatorname{sign}\left(\right.$ gar $\left.^{\prime}\right)$ for every real abs val on F t signature of a real for.

Pf. (\Longleftrightarrow) is trivial. For (\Longleftrightarrow);
(i), (ii), (icily) $\Rightarrow q \cong q^{\prime} / F_{v}$
for v any discrete valuation (previse result)
(i), (calls) $\Rightarrow q^{\prime} \cong g^{\prime} / F_{N} \cong \mathbb{R}$
~ real caplesin
by Syluartio Lau.f Inerti. L or real \&f:
At couples completion, any two regale ifs of the same din are isometric.
So: $q \cong g^{\prime}$ in ever Fr.
So done by previous cor. zqlebal fur file
Cor Let F be a finite extensin
of $\mathbb{F}_{p_{c}}(x)$. Then $u(F)=4$.
Pf Sly q is a if if. If dim $q>4$,
then q is 1 sodospic/all F_{v},
since $u\left(F_{v}\right)=4 . \quad \therefore q$ is issompic/ F.
Thus $u(F) \leq 4 . \quad$ UTS $=$.

For this, wast an anisodropic of over F of d im $=4$.

First cosi $F=\mathbb{F}_{p}(x)$.
Since $u\left(\mathbb{F}_{p}\right)=2$,
\exists anisotropic of q of α in 2 our F_{p}
Let $q=q_{0} \perp\langle x\rangle q_{0}, \quad$ of/F.

As a q.f. over $F_{v}, \partial_{1}(g)=\partial_{2}(g)=q_{0}$.
These are anisotrogsic/\#p, so q is misotropic/Fw.
$\therefore q$ is ancsotropic over $F \subset F_{n}$.
Generd case: F is a finck extensin of $\mathbb{F}_{p}(x) ; F=$ frac R for R a finctextensim of $\mathbb{F}_{p}[x]$. Deldom. Procaal Sinitarly wot a moxilibeluc R with unifurmizer π, and finite resiluoce fiell R / m.

What about $u(F)$ for F a \#iele?
It deposes on whether then is a real completion of F, or if all archimedean Completions are complex Ex. $F=Q$, one arch. abs, value, Copulation $=\mathbb{R}$.
Ex. $F=Q(\sqrt{2})$, two ard, abs values, corresp to $\sqrt{2} \longrightarrow-1.414213 \ldots$ Each has completion $=\mathbb{R}$.
Ex $F=Q(\sqrt{-2})$. One ard abs value, completion $=\mathbb{C} \quad$ Siniluly $f-\mathbb{Q}(i)$.
$E \times F=Q(\sqrt[3]{2})$. Two arch abs valuer One with completion $=\mathbb{R}$
(use red $\sqrt[3]{2}$),
one witt completer $=\mathbb{C}$
Over $\mathbb{R},\langle 1, \ldots\rangle$,$\rangle is anisotropic;$
so $u(\mathbb{R})=\infty$.
$\operatorname{So} u(F)=\infty$ if $F \leftrightarrow \mathbb{R}$;
So if a \#f ll F has a red completion.

What if F has no real completions?

- F is a totally imagines \# field ${ }^{-1}$
- es $Q(\sqrt{-2}), Q\left(\xi_{5}\right)$ ¿ or "focally complex>"

Cor if F is a totally iniginors $\#$ feels then $u(F)=4$.
$P f$ is as for the global function field case, but for archinedean abs olute values, use $F_{w} \cong \mathbb{C},+u(\mathbb{C})=1<4$.

For other $\#$ field, including Q :
Cor Say dim $q>4$. Then:
q is isotropic /F \rightleftarrows
$\forall v$ st $F_{v} \cong \mathbb{R}$, the ingege of q under $F \hookrightarrow F_{v} \cong \mathbb{R}$ is indefinite.

Same ph using: q / \mathbb{R} is csojropic $\Leftrightarrow g$ is indefinite,

Case of $Q:$ if din $8>4$, the of is isotropic $\leftrightarrow q$ is indexing $/ \mathbb{R}$.

To handle the case of \# fld that are not totally imaginary, and some other fields the hove $u(F)=\infty$:-

Thesis a variant of u :
the Elman-Lam invariant $u^{\prime}(F)$:
the sup of the dims of ancs-tropic q.f.'s $\angle F$ that correspond to torsion elmats of $W(F)$.

For Q, this eliminates pos def if: 5 neg. deft. $g^{f i}$. Aud then get $u^{\prime}(Q)=4$. More generally, $u^{\prime}(F)=4$ for all global fields.

In ghee, $u^{\prime}(F)=u(F)$ fer any field F with no rebelling $F \leftrightarrow \mathbb{R}$. (See Lam, Appendix to $\delta 6$ of (hop XI).)

Question: Whir rational \#s are the sum of three square?
Equip: What is $D(\langle 1,1\rangle$,$) over Q$?

Since we con multiply by squares α clear denominates, it suffices to determine which integer are in this set.
Use Cor of Hesse- Minkouski:
q reps a in $\mathbb{Q} \Leftrightarrow q$ reps a i- $\mathbb{R}_{r a l l} a_{p}$ To rap a i $\mathbb{R}: \Leftrightarrow a>0$.
To ley a in $Q_{p} p$ pole:
Every et in hElp is a Sum of two squares, hence also in Q_{p}, since P is ell.
For Q_{2} : recall /f F is a nom-archinidee local fill, $+q=\langle a, b, c\rangle$ is an anisotropic q.f. IF of $\operatorname{dim} 3$, then q repressits all the square classes of F other than -dato.

Apply, this to $q:\langle 1,1$,$\rangle over Q_{2}$: get q reps every square class other the -1 . A unit in \mathbb{C}_{\sim}^{x} is a square. iff it is $\equiv 1$ mod 8), So a general element of Q_{L}^{x} is a square iff it is $2^{2 a}$. (unit $\left.\equiv 1(\bmod 8)\right)$.
So: $n \in \mathbb{C}$ is in $D(q)$
$\Longleftrightarrow n>0$ and $-n \neq 4^{a}(8 b+1)$.
Equiv: $n>0$ and $n \neq 4^{a}(8 b-1), a, b \in D$.
Ex. Which non- 0 elements in Q are Sums of 4 square?

Again reduce to \mathbb{Z}. $O K / \mathbb{Q}_{p} f_{-p} \neq 2$ For \mathbb{R} : OK ifs poisitus
For $Q_{2}:$ if $\neq 4^{a}(8 b-1)$, then

$$
\text { in } D(<1,1,1\rangle) \subseteq D(<1,1,1,1)\rangle
$$

If $4^{a}(8 b-1)$, then $4^{a}(8 b-2)+4^{a}$ sum of 3 squares 2 square.
So yes for all pos. integers.

To prove Hasse-Minkousk: :
WMA of regular (otherwise isotropic (F)
Proceed by induction on dim 5 .
Prove case of din $q=1,2,3,4$ syonater, t the start induction with din $=5$.

For $\operatorname{din} q=1 ; \quad q=\langle a\rangle, a \neq 0$.
then of ancsitroic /F and over F_{s},
Higher dimensioned cases:
To be discussed.

