Recall: Galois co homology

- defines in terms of group coho. Given an action of a profiritt group Γ on an abelian group A, we Can de tine coho gps $H^{i}(T, A)$ for $i=9,2, \ldots$. Here $H^{\circ}(T, A)=A^{\top}$. Given a res $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of ablian gp, w Γ-actins, we get a less. of colo gps mind, $H^{\prime}, H^{\prime}, H^{2}, \ldots$
If Γ acts on a nom-abclian grope G, we can still debbie $H^{i}(r, G)$ for $i=0,1$. $H^{\circ}(\Gamma, G)=G^{?}$. $H^{\prime}(\Gamma, G)$ is inset a pl sat. A sees. $\rightarrow N \rightarrow G \rightarrow H \rightarrow 1$ giver a les. of 6 terms, avoluai H°, H^{\prime} ending with $H^{\prime}(T, H)$. (If $N \subset Z(G)$, get $<7^{\text {th }}$ tern, $H^{2}(P, N)$.)

If S is just a pointer st and we have an action of P on S, we can still define

$$
H^{\circ}(\Gamma, S):=S^{\Gamma} \text {. But no } H^{\prime}, \ldots
$$

Suppose $D \subset G$, groups, Dint acc normal with compatible P-actions.

Got a s.e.s. of pointer sets wist Γ-actions:
$1 \rightarrow D \rightarrow G \rightarrow G / D \rightarrow 1$
Tptaset of left consent
Then gat a 5-tern coho exact sg:

$$
\begin{aligned}
& 1 \rightarrow H^{\circ}(\Gamma, D) \rightarrow H^{\circ}(\Gamma, G) \rightarrow H^{\circ}(\Gamma, G, D)
\end{aligned}
$$

Galois csho in terms of group cohou- logy:

$$
\begin{aligned}
& H^{i}(F, G):=H^{i}\left(G d(F) G\left(F^{\circ}\right)\right), \\
& H^{i}(E / F, G):=H^{*}(G l(E / F), G(E))
\end{aligned}
$$

for G a linax algebrais goop $/ F$, i.e. iso to a Zarisk: closel subsp of $G C_{n}$; $G C_{n}, S C_{n}, O_{n}, \mathbb{G}_{m}, \mathbb{G}_{a}$ Recall:
"Hilberts Thm 90": $H^{\prime}\left(E / F, G L_{n}\right)=1$.
Cor $H^{\prime \prime}\left(E / F, S L_{n}\right)=1$.

$$
\text { esf } \mathbb{C}_{m}
$$

$$
\text { Pf. } 1 \rightarrow S L_{n} \rightarrow G C_{1} \xrightarrow{\operatorname{det}} \mathbb{C}_{n} \rightarrow 1
$$

$$
\mapsto S_{11}(F) \rightarrow G_{11}(F) \xrightarrow{d t} F_{11} F^{x}
$$

$$
\begin{aligned}
m & \rightarrow H^{\prime}\left(E / F_{1}^{\prime \prime} S_{n}\right) \rightarrow H^{0}\left(E / E, G C_{n}^{\prime \prime}\right) \xrightarrow{d t} H^{\prime \prime}\left(E / F, C_{n}\right) \\
& \longrightarrow H^{\prime}\left(E / F, S C_{n} \rightarrow H^{\prime}\left(E / F, C C_{n}\right)\right. \text { trivid }
\end{aligned}
$$

Recall, in Galois th, there is also an addition form of Hebert 90.
Corresponding C_{0} ho result:

$$
H^{\prime}\left(E l F, G_{a}\right)=0 .
$$

More generally: $\quad H^{i}\left(E / F, \mathbb{E}_{a}\right)=0 f-i>0$.
(Sem, Local' Fuels, Che S si)
The analog for \mathbb{C}_{m} is false.
In fact, $H^{2}\left(F, \mathbb{F}_{m}\right)=\operatorname{Br}(F)$!
(See Sere, Local Files, Chop, \{4-5)

Another approad t H^{\prime} i torsors. (= principal honogenears spaces)
Realli: In topology, if G acts singly transitively on a space X, say X is a G-terser (or G-PHI).

Ex. $A \subset \mathbb{R}^{3}$ a 2 -dinA veatesubspace.

- 'group.

Lat $X \subset \mathbb{R}^{3}$ be a plane parallel to A (not nee. Throgh origin)
Then A acts simply transitively a X by translation: $a \cdot x=a+x$.

If G acts on a space X, have

$$
\begin{aligned}
& G \times X \longrightarrow X \times X \quad \begin{array}{l}
\text { (heme if } \\
\text { torse-) }
\end{array} \\
& (g, x) \longmapsto(g \times x) .
\end{aligned}
$$

Can use this as the defin of a torsion.
In above example with eplane A, + porllal X, if pick a pt $x_{0} \in X$, have

$(h o m e . ~ d e p e l s)$
on x_{0}
Can also consider tors in algebraic gerentbut now a vanity /F might not have apoid IF.

Ex. Let $F=\mathbb{R}, G=S O_{2} / \mathbb{R}$, X : curve in $\mathbb{A}_{\mathbb{R}}^{2}$ given, $x^{2}+y^{2}=c$
(\mathcal{G} - some choice of $c \in \mathbb{R}^{x}$),

$$
\mathrm{SO}_{2}(\mathbb{R})=\left\{\left.\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) \right\rvert\, a, b \in \mathbb{R}, a^{2}+b^{2}=1\right\} .
$$

acts on $X(\mathbb{R})$ by rotation,
and similarly $\mathrm{SO}_{2}(\mathbb{C}) \cong \mathbb{C}^{x}$ acts on $X(\mathbb{C})$ by potation;

$$
\binom{x}{y} \mapsto\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)\binom{x}{y} .
$$

If $c>0$, the $X(\mathbb{R}) \neq \Phi$; + then can pick an \mathbb{R}-pt $P \in X$, a gut $\mathrm{SO}_{2} \longrightarrow X$

But if $c<0$, there are no \mathbb{R}-pts on X, but there are $\mathbb{R} p$ ts on SO_{2}, So not isomorphic varieties $\not \mathbb{R}$.

But even if have $c<0$, we still have $G \times X \xrightarrow{\sim} X \times X$ as before. (Neither side hes an \mathbb{R}-pt)

In general, we se say that a G-torso- X over F is trivia if $G \xrightarrow{\sim} X$, over F. $E_{\text {gris }} X$ has an F-point.

So in above exapls

$$
X: x^{2}+y^{2}=c \quad / \mathbb{R} \quad\left(c \in \mathbb{R}^{x}\right)
$$

is a trivial torso under $G=S O_{2, \mathbb{R}}$ iff $c>0$.
Note: In the above example, with $G=S O_{2}, \mathbb{R}$, the grip $H:=\mathbb{B}_{m, \mathbb{R}}$ is
also a linear algebraic group $/ \mathbb{R}$, and

$$
H(\mathbb{C})=\mathbb{G}_{-}(\mathbb{C})=\mathbb{C}^{x}=F(\mathbb{C})
$$

But $H(\mathbb{R}) \neq G(\mathbb{R}), \quad H \neq G$.
We say G, H ara (tourist) forms $\angle \mathbb{R}$ of the same group \mathbb{G}_{m} over \mathbb{C} ie. these groups \mathbb{R} become is.unphic \mathbb{C}.
In the situation of the above exer-ple, we have $K=\mathbb{R}, K^{\text {sep }}=\mathbb{C}$,

$$
\Gamma=\operatorname{Gal}(\mathbb{R})=\operatorname{Gal}(\mathbb{C} / \mathbb{R}) \cong C_{2}
$$

Γ acts on $G(\mathbb{C}) \cong \mathbb{C}^{x}$
and $G(\mathbb{C})^{\Gamma}=G(\mathbb{R})=\mathrm{SO}_{2}(\mathbb{R})$.
So $H^{\prime}(\mathbb{R}, G)=H^{\prime}\left(C_{2}, \mathbb{C}^{x}\right)$
where the actin- of C_{2} on \mathbb{C}^{x}
is not the obvious one, but rather the one from viewing $\mathbb{C}^{x} \cong \mathrm{SO}_{2}(\mathbb{C})$.
Couples spear. Torogomilg

$$
S O(<1,1, \ldots 12),
$$

not spiel unitary g_{P}

This suggests a relationslig between Galois coh omologn $H^{\prime}(F, G)$
and G-torsors / F.
In facti have naturel bijection

$$
H^{\prime}(F, G) \leftrightarrow\left\{\begin{array}{l}
\text { iso. closses } \\
\text { of } G \text {-torios } \\
\text { over } F
\end{array}\right\}
$$

Moreove, for E / F Galois,

$$
H^{\prime}(E / F, G) \longleftrightarrow\left\{\begin{array}{l}
\text { iso. clesses of } \\
G \text {-torsors } \angle F \\
\text { split } \angle E
\end{array}\right\}
$$

$$
\bigcap<
$$

$$
H^{\prime}(F, G)
$$

i.e. becone trivics.
inclusin inducal by sarjacti-

$$
\mathrm{Gel}(F) \rightarrow \mathrm{Ge}(E / F)
$$

What is the currespondence

$$
H^{\prime}(F, G) \leftrightarrow\left\{\begin{array}{l}
\text { iso. classes } \\
\text { of } G \text {-torrs } \\
\text { over } F
\end{array}\right\} ?
$$

First, a notational issue:
For a G-torso X over F,
G acts on $X\left(F^{\text {sep }}\right)$, by the torso action.
Also $\Gamma=G a l(F)$ acts on $X\left(F^{\text {sep }}\right)$.
These action dort commute.
So need to have them act on appo site sides of X.
Convention: Γ acts on $X\left(F^{s}\right.$ sp a the left, and G acts on $X\left(F^{\text {spp }}\right.$) on the right.
So the G action is of the form (reaction)

$$
X \times G \rightarrow X \quad(x, q) \mapsto x \cdot g
$$

and the tororocanditio become:

$$
X \times G \xrightarrow{\sim} X \times X \quad(x, g) \mapsto(x, x, g)
$$

Now, to describe the currespondence

$$
H^{\prime}(F, G) \leftrightarrow\left\{\begin{array}{l}
\text { iso. closes } \\
\text { of } G \text {-torose } \\
\text { over } F
\end{array}\right\}:
$$

Given a G-torso X over F, with an cation of $\Gamma=\operatorname{Gal}(F)$ on $X\left(F^{\text {sep }}\right)$: pick $x_{0} \in X\left(F^{\text {sep }}\right)$.
leftection

For $\gamma \in \Gamma$, $\gamma \cdot x_{0} \in X\left(F^{s_{4}}\right)$, so \exists ! elf. $f(\gamma) \in G\left(F^{s_{p}}\right)$ st

Easy to check. $f: \Gamma \rightarrow G\left(F^{s e p}\right)$ is a

$$
\text { 1- cocpck; ie. } f \in Z^{\prime}\left(T, G\left(F^{s p}\right)\right) \text {. }
$$

Changing the above choice of $x_{0} \in X\left(F^{\text {sp o }}\right)$
gives a new f chionligo.s to the above f.
So un e gat a well defiant element of

$$
H^{\prime}\left(\Gamma, G\left(F^{\text {sep }}\right)\right)=H^{\prime}(F, G) .
$$

(Siniluly, fo a G-torson X over F that splits $/ E$, we have an actin of $\mathrm{Gal}(E / F)$ on $X(E)$, and we get an element of $H^{\prime}(E / F, G)$
For the reverse direction, given an el of $H^{\prime}(F, G)$, pick a representing cocycle $f \in Z^{\prime}(F, G)$. So $f: \Gamma_{11} \rightarrow G\left(F^{\text {sep }}\right)$ st $d f=0$. $\mathrm{Ge}\left(F^{\mathrm{ser}} / F\right)$
L t X be G virus as a set.
Put a right faction on X_{i} if $X \leftrightarrow g$

$$
\dot{X}^{n} \quad \underset{G}{n}
$$

then for $h \in G$ detain $x \cdot h \Leftrightarrow g h$

$$
\stackrel{a}{x}
$$

Also put a laft Γ-cction on X :

\[

\]

This defies a G-torsor with a T-ection; so a C-trsor/F. Can chack tis direction is invess to the other directio.

Ex. For ang fille F, thitbert 90 syys $H^{\prime}\left(F, G L_{n}\right)=1$. So every $G l_{n}-$ torion $/ E$ is trivicd. Sinilal, for $S L_{n}$-torsors.

But for othe linem algebraie graps C, often \exists nom-trivid forses.

- as we sav vite $\mathrm{SO}_{2, \mathbb{R}}$. Alss

The existace of nariss. qfis $/ F \longleftrightarrow \exists$ na-divial $O_{n}-$ tarses /F.

The above comes from a geneal principle:
G given an algebraic object Δ over a file F, let $G=\operatorname{Aut}(\Delta)$, the $s p$ of ants of Δ.

For vecsomeble objects Δ, this is an alg. sp /F.
(t in Key cases, a line al, $s_{p} i$ e $\left.\subseteq G C, F\right)$
of for each E / F, have $G(E)=\operatorname{Att}(\Delta(E))$.
Then:

More gill,

$$
H^{\prime}(E / F, G) \leftrightarrow\left\{\begin{array}{l}
\text { iso classes of objects } / F \\
\text { that blame iso to } \Delta \text { over } E
\end{array}\right\}
$$

Back to Example:
Veg.ler qualatic forms of $/ \mathrm{F}$ dim n i

$$
\text { Take- } q=\langle 1,1, \ldots,\rangle, G=\operatorname{Aat}(\boldsymbol{r})=O(\delta)=O_{n, F} .
$$

$H^{\prime}\left(E / F, O_{n}\right) \longleftrightarrow$ Veg. gif. / F that become isometric to q over E.
Case $E=F^{\text {spp }}$:
All rag if /F be ore is. to $q / F^{\text {spp }}$.
So:
$H^{\prime}\left(F, O_{n}\right) \hookrightarrow\{(50 . c l o f$ res sf of dim n our $F\}$
as cline.
To prove the above general principle, that
$H^{\prime}(E / F, G)$ clessifire the fin Δ^{\prime} of $\Delta / i=$ that become is to \triangle are E :
Use: the structure consist to ais. to, the with aldol date, t ant's of the structure for a sabsp of $G C_{\text {. }}$, funatoricll, in the field.

Ex. For qua of dim ni quadratic space (V, q),

$$
G=A_{a t}(q)=O(q) \subset G C_{n} .
$$

Ex. A ssa of dy n : a n^{2} bini vs,

$$
G=A \operatorname{t}(A) \subset G C_{n}{ }^{2} .
$$

with cell structure
In general, say we have an alg. object Δ / F, (eg of $f,(s a, \ldots)$, viewed as a structure on F^{n}.
So $G:=$ Alt $\Delta \subset C C$ n. Toke extersin E / F.
Lat $X=\{$ objects $/ E$ iso to \triangle over $E\}$.
A pointer set, with distinguishes et Δ
X is acted on by $\Gamma:=G l(E / F)$; a T-sat.

$$
\begin{aligned}
X^{P} & =\{\text { objects } / F \text { iso to } \Delta \text { our } E\} \\
& =\{\text { forms of } \Delta / F, 1 \text { so to } \Delta \text { our } E\} .
\end{aligned}
$$

Two such forms are iso $/ E$ if in the sene orbit of

$$
\begin{aligned}
G C_{n}(F) & =G C_{n}(E)^{\Gamma} \\
& =H^{\circ}\left(E / F, G L_{n}\right)
\end{aligned}
$$

So the iso classes of forms of \triangle over F That become iso to Δ over E are in bijection with the orbits of $G L_{n}(F)$ on $X^{\Gamma}=H^{\circ}(\Gamma, X)$.

The set X is acted on transitively by $G L_{n}(E)$, and the stabillaiof $\Delta \in X$ is $\operatorname{Aat}(\Delta)(E)=G(E)$.

So $X \underset{\text { preicoviaj }}{\stackrel{b_{i j}}{r}} C C_{n}(E) / G(E)$
Traction (left consuls)
The inclusion $G=A_{n}+(\Delta) \longleftrightarrow G C_{n}$ Then gives a 5-tern cohomology exact sequence, as discassal. This will then show the general pringie.

