Section 3 Generalization of Modified Macdonald Polynomials
Def: - (General) diagram: a collection of cells in the $i^{\text {st }}$ quadrant.

- Bottom cell: the lowest cell in a column of a diagram.
- Filled diagram: the pair (D, f) where $f: D \backslash\{$ bottom cells of $D\} \longrightarrow \mathbb{F}$
(ie. a diagram with a scalar in each non-bottom cell)
eg. \square

A general diagram.
q

Notation: Given a diagram D, we write:

- (i, j) : cell in row i and column j (French notation)
- $D^{(j)}: j^{\text {th }}$ column of D
$\left(D^{(i)}:=\{i:(i, \bar{j}) \in D\}=\right.$ row numbers of cells in column \bar{j} of $\left.D\right)$

In this paper, we will focus on single interval columns (ie. no "breaking" columns)
egg.

$$
\therefore D=[[1,3],[2,3],[2,2]]
$$

* Order the cells from left to right, starting from top row. (reading order)
eeg.

$$
D=\begin{array}{|lll}
\hline 1 & 2 & \\
3 & 4 & 5 \\
6 & & \\
\hline
\end{array}
$$

Def: Let $\omega \in S_{n}$. An inversion w.r.t. ω is a pair of cells (u, v) in a diagram D (where $|D|=n$) where $\omega(u)>\omega(v)$ (Here identify a cell " u " as the " u-th" satisfying cell in reading order)
u \square
or
(row i)
(row :-1)

Define $\operatorname{Tnv_{D}}(\omega):=q^{\text {\#inversons ind w.r.t. } \omega}$

$$
\text { egg. } \quad D=\begin{array}{|lll}
1 & 2 & \\
3 & 4 & 5 \\
6 & &
\end{array} \quad \omega=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 5 & 4 & 3 & 1 & 6
\end{array}\right)
$$

- Q none
- 5: 4
- 4: 3

$$
\therefore \operatorname{in} v_{D}(\omega)=q^{4}
$$

- 3 . 1
- 1: none
- 6: none

Def: Let D be a diagram with n cells. For $\omega \in S_{n}$, a cell u in D is a decent $\omega . r$. . ω if $\omega(u)>\omega(v)$ where v is the cell directly below u.

Define $\operatorname{maj}(D, f)(\omega):=\prod_{u: d e s c o n t ~ m D} f(u)$ w.r.t. ω
eg. $(D, f)=\begin{aligned} & q^{2} t \\ & q^{3} t \\ & \operatorname{maj}_{(1, f)}(\omega)=t\end{aligned}$
Define $\operatorname{stat}_{(D, f)}(\omega):=\operatorname{in}_{D}(\omega) \operatorname{maj}(D, f)(\omega)$.
egg.

$$
\begin{aligned}
& (D, f)=\begin{array}{l}
q^{2} t \\
q^{3} t \\
\operatorname{stat}_{(D, f)}(\omega)=q^{4} t
\end{array}
\end{aligned}
$$

Def: The (generalized) modified Macdonald polynomials $\tilde{H}_{(0, f)}(x ; q t)$ for a filled diagram (D, f) is

$$
\tilde{H}_{(D f)}[X ; q, t]:=\sum_{\omega \in S_{|D|}} \operatorname{stat}_{(D, f)}(\omega) F_{i D e s(\omega)} .
$$

* If D has a partition shape μ and $f(u)=q^{-a r m(u)} t^{\operatorname{leg}(u)+1}$, then $\left.\tilde{H}_{(D, f)} s t\right)[X ; q, t]=\tilde{H}_{\mu}[x ; q, t]$.

$$
c_{\text {denoted }} f_{\mu}^{s t}
$$

egg.

$$
\begin{aligned}
& \omega=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 5 & 4 & 3 & 1 & 6
\end{array}\right) \\
& \omega^{-1}=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 1 & 4 & 3 & 2 & 6
\end{array}\right) \quad i \operatorname{Des}(\omega)=\operatorname{Des}\left(\omega^{-1}\right)=\{1,3,4\}
\end{aligned}
$$

$$
F_{\{1,3,4\}}=\sum_{b_{1}<b_{2} \leqslant b_{3}<b_{4}<b_{5} \leqslant b_{6}} x_{b_{1}} x_{b_{2}} x_{b_{3}} x_{b_{4}} x_{b_{0}} x_{b_{6}}=x_{1} x_{2}^{2} x_{3} x_{4}^{2}+x_{1} x_{2} x_{3} x_{4} x_{5}^{2}+\cdots
$$

$$
\text { e.g. }(D, f)=\square \alpha \quad(\alpha \in \mathbb{F}) \quad(\therefore n=|D|=3)
$$

$$
\begin{aligned}
\therefore \tilde{H}_{(D, f)}\left[x_{; q}, t\right] & =F_{\phi}+(q+\alpha) F_{\{1\}}+(q+\alpha) F_{\{2\}}+q \alpha F_{\{1,2\}} \\
& =h_{3}+(q+\alpha) S_{21}+q \alpha e_{3}
\end{aligned}
$$

Define $c y c(D, f):=\left(D^{\prime}, f^{\prime}\right)$ where $D^{\prime}=\left[D^{(2)}, \ldots, D^{(l)}, D^{(1)}+1\right]$ add 1 to the endpoints of the interval $D^{(1)}$
f^{\prime} : same filing as f while the last column entries in D^{\prime} are the same as the ${ }^{\text {st }}$ column in D
Tee. cyc(D,f) is a filled diagram obtained by moing $1^{\text {st }}$ column of (D, f) to the last (rightmost) Column and shit upward by 1 cell.
egg.

Lemma: Let $\left(D^{\prime}, f^{\prime}\right)=\operatorname{cyc}(D, f)$. Then for any $\omega \in S_{\mid D_{1},}$, we have
because cyc preserves reading order of the cells

$$
\operatorname{inv_{D}}(\omega)=\operatorname{in} v_{D^{\prime}}(\omega)^{t}, \quad \operatorname{maj}(D, f)(\omega)=\operatorname{maj}\left(D^{\prime} f^{\prime}\right)(\omega) . \leftarrow \text { because cyc preserves columns and reading order. }
$$

Hence $\tilde{H}_{(D, f)}[x ; q, t]=\tilde{H}_{\left(D^{\prime} f^{\prime}\right)}\left[x_{i} q, t\right]$. (i.e. cyc preserves inv and maj, and hence \tilde{H})

Def: Let $\omega=w_{1} \cdots w_{n}$ be a word of positive integers. A standardization $s t d(\omega)$ of ω is defined to be the unique $\sigma \in S_{n}$ st. $\sigma_{i}<\sigma_{j}$ if $\omega_{i}<\omega_{j}$ or $\left(w_{i}=w_{j}\right.$ and $\left.i<j\right)$
egg. $\omega=3155 \quad$ sta $(\omega)=2134$.,

```
e.g. Given }\phi:\mp@subsup{S}{4}{}->\mp@subsup{S}{4}{}\mathrm{ s.t }\phi(2134)=142
```


For $w \in S_{n}$ and $C=\left\{c_{1}<c_{2}<\cdots<c_{r}\right\} \leq[n]$, define $W_{c}:=W_{c_{1}} W_{c_{2}} \cdots W_{c_{r}}$
egg. $w=1324 \in S_{4}, \quad C=\{2,4\}$.
$\left.w\right|_{c}=34$
For a subdiagram E of a diagram D and $W \in S_{I D 1}$. define $W \underset{E}{D}:=\left.W\right|_{\left\{N_{D}(u): u \in E\right\}}$ No (u) o order of cell u in reading order
e.g. $\quad D=\begin{array}{lll}1 & 2 & \\ 3 & 4 & 5\end{array} \quad \quad w=254316$

$E=$| | 2 | |
| :--- | :--- | :--- |
| 3 | 5 | |
| 6 | | |

For a subdiagram E of a diagram D and a map $\phi: S_{|E|} \rightarrow S_{|E|}$, define $\phi \uparrow_{E}^{D}: S_{|D|} \rightarrow S_{|D|}$ to be the unique map satisfying $\left(\phi \uparrow_{E}^{D}(w)\right)_{E}^{D}=\phi\left(w \downarrow_{E}^{D}\right)$ and $\left(\phi P_{E}^{P}(w)\right)_{D V E}^{D}=w_{D E}^{D} \quad$ (ie. only change w_{E}^{D} part using extended ϕ and keep the rest)

$\left.\left.(217695348)\right|_{-} ^{\downarrow}\right|_{E} ^{D}=7934$
If $\phi: S_{4} \rightarrow S_{4}$ s.t. $3412 \mapsto 4132$, then $\phi(7934)=9374$,

$$
\phi_{E}^{P}(217695348)=219635748
$$

only change 7934 and keep the rest

