$$
\frac{\text { Eulerian Aolydomals }}{A_{n}(t)=\sum_{\sigma \in \&_{n}} t^{\operatorname{des}(\sigma)}} \approx \sum_{\sigma \in \&_{n}} t^{\operatorname{exc}(\sigma)}
$$

Recall

$$
\begin{aligned}
& \approx\{\dot{d e s}(\sigma)=|\{i \in[n-1] \mid \sigma(i)>\sigma(a+1)\}| \\
& \circlearrowleft_{0^{v^{*}}}\{\operatorname{exc}(\sigma)=|\{i \in[a-1] \mid \sigma(i)>i\}| \\
& \text { - } \operatorname{PES}(\sigma)=\{i \in[n-1] \mid \sigma(i)>\sigma(i+1)\} \\
& \left\{\begin{array}{l}
\operatorname{maj}(\sigma)=\sum_{i \in D \in 5(\sigma)} i \\
i
\end{array}\right. \\
& \sum^{\circ}\left\{\begin{array}{c}
(\in D \in 5(\sigma) \\
0 \ln v(\sigma) \delta \mid\{(i, j) \mid \sigma(i)>\sigma(g)
\end{array}\right. \\
& l<\mathcal{y}\} \\
& \text { Ex } \quad A_{3}(t)=1+4 t+t^{2} \\
& A_{4}(t)=1+11 t+11 t^{2}+t^{3}
\end{aligned}
$$

praperties of $\quad A_{n}(t)=\sum_{j=0}^{1-1}\left\langle\begin{array}{l}n \\ j\end{array}\right\rangle t^{j}$

$$
\text { paludlonic }\left\langle\begin{array}{l}
n \\
j
\end{array}\right\rangle=\left\langle\begin{array}{c}
n \\
n_{4-j}
\end{array}\right\rangle \forall j
$$

- vnimodal

$$
\left.\left\langle\begin{array}{l}
n \\
0
\end{array}\right\rangle \leqslant\left\langle\begin{array}{l}
n \\
1
\end{array}\right\rangle \lesssim, \ldots\left\langle\begin{array}{l}
n \\
m
\end{array}\right\rangle \geq,\right\rangle\left\langle\begin{array}{c}
n \\
n-1
\end{array}\right\rangle
$$

q-analog (ma), exc)

$$
\begin{aligned}
& A_{n}(q, t)= \sum_{\sigma \in b_{n}} q^{m a j}(\sigma)-e \times(\sigma)+e \times c(\sigma) \\
& A_{3}(q, t)= 1+\left(2+q+q^{2}\right) t t t^{2} \\
& A_{4}(q, t)=1+\left(3+2 y+3 q^{2}+2 q+q^{4}\right) t \\
&+\left(3+2 y+3 q^{2}+2 q+q^{4}\right) t^{2}+t^{3}
\end{aligned}
$$

Th (Snareshian α 2007)

$$
\sum_{n \geq 0} A_{n}(q, t) \frac{u^{n}}{[n]_{g}!}=\frac{(1-t) e x p_{q}(n)}{e \times p_{g}(t n)-t e x v_{g}(u)}
$$

where $[n]_{q}=1+q+\cdots+q^{n-1}=\frac{q^{n}-1}{q-1}$

$$
\begin{aligned}
& {[u]_{q}!\approx[n]_{g}[n-1]_{q} \cdots[1]_{q}} \\
& e x \Gamma_{q}(u)=\sum_{n \geq 0} \frac{u^{1}}{[n]_{q}!}
\end{aligned}
$$

Note (1) $q=1$ Euler's exp gen function
(2) Follows from formula that

$$
\begin{aligned}
& \text { - } A_{n}(q, t) \text { is palindromic } \\
& -A_{n}(q, t) \text { is } g \text {-unimodal }
\end{aligned}
$$

Symmetric function identity

$$
\begin{aligned}
& \sum_{n \geq 0} Q_{n}(x, t) u^{n}=\frac{(1-t) H(u)}{H(t u)-t H(u)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } H(u)=\sum_{n \geq 0} h_{n} u^{n} \begin{array}{c}
\text { complex. } \\
n o m o y e r e o u s ~
\end{array} \\
& Q(x, t) \\
& \left.\operatorname{PS}(f)=f\left(1, q, q^{2}, \ldots\right)(1-q)^{n}\right)
\end{aligned}
$$

Gessel's Fund Quasisymm Function
For $S \in[n-1]$

$$
\begin{aligned}
F_{s, n}(x)= & \sum^{i_{1} \geq \cdots \geq i_{n} \geq 1} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}} \\
& j \in s \xrightarrow{\rightarrow} i_{j}>i_{j+1}
\end{aligned}
$$

basis for $Q r_{y m}$

$$
\operatorname{ps}\left(F_{S, n}\right)=\frac{q^{\sum_{S}}}{[n]_{y}!} \quad \sum S=\sum_{N \in S}
$$

Ex $\quad h_{n}=F_{\Phi, n} \quad e_{n}=F_{[n-1], n}$

$$
\begin{aligned}
\operatorname{ps}\left(H_{n}\right) & =\operatorname{ps}\left(\sum_{n \geq 0} h_{n} u^{n}\right) \\
& =\sum_{n \geq 0} \frac{u^{n}}{[n]_{q}!}=\exp _{q}(u)
\end{aligned}
$$

Our def

$$
Q_{n}(x, t)=\sum_{\sigma \in b_{n}} F_{D E x(\sigma)} t^{e^{e x(\sigma)} \text { Gulerian }} \begin{gathered}
\text { quassisyan } \\
\text { function }
\end{gathered}
$$

$$
\begin{aligned}
& \sum D E x(\sigma)=m a)(\sigma)-e x(\sigma) \\
& \operatorname{pS}\left(Q_{n}(x, t)\right)=\frac{\sum_{0 b g_{n}} q^{m n j(\sigma)-e x c(t)} t^{e x c}(\sigma)}{[n]_{q}!} \\
&=\frac{A_{n}(q, t)}{[n]_{q}!} \\
& \sum_{n \geq 0} Q_{n}(x, t) u^{n}=\frac{(1-t) H(u)}{H(t u)-t(t u)} \\
& \Longrightarrow Q_{n}(x, t) \text { is symmetric }
\end{aligned}
$$

To prove this we used alternative characterizations Banner characterization A banner is a word over
bureed alphubet $\{1, i, 2,2, \ldots\}$
such that

- each unbarred letter is followed by a letter \geqslant in value or is last
- each barced letter is followed by a letter $\leqslant \ln$ vulue

$$
\begin{aligned}
& b=\left(\begin{array}{llllllll}
2 & 3 & 8 & 3 & 3 & 5 & 5 & 4 \\
4 & 6
\end{array}\right) \\
& x_{6}=x_{2} x_{3} x_{8} x_{3} x_{5} x_{5} x_{5} x_{4} x_{4} x_{6} \\
& \text { Th } Q_{n}(x, t)=\sum_{b \in B_{n}} x_{b} t^{\text {\#tbars }(b)}
\end{aligned}
$$

We use this to obtain a cecullence felation for $Q_{n}(x, x)$ $\Longrightarrow g$ gnerating function formula Prartitions
Given a finte poset p, a function $f: P \rightarrow \mathbb{Z}_{>0}$ is a Pipartition if it is weatly decreabing, that is

$$
f(a) \geq f(b) \text { if } a<b \text { in } p
$$

$f: P \rightarrow \mathbb{Z}_{70}$ is a strict Repartition if it is strictly decreasing that is
$f(a)>f(b)$ if $a<b$ in p
Let \tilde{f}_{p} be set of P-partition $\tilde{F}_{\rho} \quad " \quad " \quad$ " strict pepartution,

Th (Stanley - P~partion ceciplocity) \forall poses P of size a $\omega k_{p}(x)=\tilde{k}_{p}(x)$
winvolution \cap QSyma takes $F_{s, n}$ to $F_{\text {[n-Bls, } n}$
Stanley's obreruation
Let p be a zig-zay posot
 $\in \mathcal{F}_{p}$

$$
23 \tilde{8}^{\text {j }} 33=\frac{\text { visteps }}{5} 446 \in \mathbb{B}_{10}
$$

$$
\epsilon \tilde{F}_{p}^{\sim}
$$

I
smirnou word
ℓ adjacent

$$
238.345 .4 .2 .16
$$

letters different

Descents corcespond to upsteps of zigzag posey

Let $S W_{n}$ be the set of smirnov words on \mathbb{Z} olengthn

$$
\begin{aligned}
& \sum_{b \in B_{n}} x_{n} t^{\# b a r s(b)}=\sum_{\rho \in Z Z_{n}} K_{p}(x) t^{\text {upsles }} \\
& \sum_{w \in S w_{n}} x_{w} t^{\operatorname{des}(w)}=\sum_{p \in Z Z_{n}} \tilde{K}_{p}(x) t^{\text {upsteps }}
\end{aligned}
$$

By p-partitron ceciptocity

$$
\begin{aligned}
w Q_{n}(x, t) & =w \sum_{b \in B_{n}} x_{b} t^{\text {\#bars }(b)} \\
& =\sum_{w \in S w_{n}} x_{w} t^{\operatorname{des}(w)} \\
& =S W_{n}(x, t)
\end{aligned}
$$

gen function result is now

$$
\sum_{n \geq 0} f w_{n}(x, t) u^{n}=\frac{(1-t) E(u)}{E(u t)-t E(n)}
$$

Smirnou words are same as proper colorings of path graph n nodes

$$
\begin{array}{cccccc}
0 & 0 & 0 & w_{1} \\
w_{1} & w_{2} & w_{3} & w_{4}
\end{array} \quad w_{n}
$$

$5 W_{n}(x, 1)$ is chromatic Symmetric function of path Labeled path grappa

$$
\begin{aligned}
& P_{n}=(1)-0 \\
& S w_{n}(x, t)=\sum_{c \in C\left(p_{n}\right)} t^{\operatorname{des}(c)} x_{c}
\end{aligned}
$$

