Recall from last time:

$$
\begin{aligned}
A_{n}(q, t) & \stackrel{\text { lift }}{\rightarrow} Q_{n}(x, t) \xrightarrow{w} S W_{n}(x, t) \\
S W_{n}(x, t) & =\sum_{\omega \in \in S W_{n}} x_{w} t^{\text {odes }(w)} \\
& \begin{array}{c}
\text { words over } \mathbb{Z}_{>0} \\
\text { with no adjacent repents } \\
\text { Length } n
\end{array} \\
= & \sum_{c \in C\left(P_{n}\right)} x_{c} t^{\operatorname{des}(c)} \\
= & \sum_{c \in C\left(P_{n}\right)} x_{c} t^{\operatorname{asc}(c)}
\end{aligned}
$$

$$
P_{n}=(1) \quad(2) \cdots-n
$$

$$
\begin{aligned}
& X_{G}(x, t)=\sum_{c \in C(G)} t^{\operatorname{asc}(c)} x_{c} \in Q_{s_{y m}^{m}}^{Q[+]} \\
& \operatorname{asc}(c)=|\xi i j \in E(G)| i<j \quad c(i)<c(j)\} \mid \\
& \partial e s(c)=|\{i \in E(\sigma) \mid i c j \quad c(c)>c(j)\}|
\end{aligned}
$$

Pron If $x_{6}(x, t)$ is symmetric then $f^{\prime E}(G) \mid X_{6}\left(x, t^{-1}\right)$

$$
=x_{6}(x, t)
$$

Consequently $X_{6}(x, t\} 13$ palindromic and asc(c) can be replaced by desc).

When is $X_{6}(x, t)$ symmetric?
Ans whenever G is

- natural unit interval grass ($11<(\rho), b$ is a natural unit interval order) (Shareshian αW.)
- naturally labeled cycle

- Connected components as above.

Formula fion last time

$$
\sum_{n \geq 0} X_{p_{n}}(x, t) u^{n}=\frac{(t-1) E(u)}{E(t u)-t E(w)}
$$

has the consequences for $X_{\rho_{n}}$

- e-positive a e-unimodal
w.e for $0 \leq J \subseteq\left\lfloor\frac{n-1}{2}\right\rfloor$
coef t^{J+1} - copf t^{J} is e-positive
- Frobenius char of rep of ln
on cohomology of toric variex assoc with dual pernutatedson is $w X_{p_{n}}(x, t)$
(A/oces, a Stan/ey)
Consecture (Cefinement of Stanley-sten)
If 6 is a natucal unit intarval graph then $x_{6}(x, t)$ is e-positive and e-unimodal

Conjecture ? Connection w, th Hessenberg Varieties (now proved by Brosnao - Cbon and Guay. Paguet)

Consequences
(1) Schers-positivepty

Consecture 1

$$
p \text {-tableaux }
$$

(2) Schur - unimodalify

This follows fron lonjecture 2 and the Hard cefschetz Th

Problem Find a combinatorial ploof of Sclur - unimodality that involves prtableaus
(3) p-positivity and p-vaimodality of $\omega \times(w, t)$
powef-sum symmetic fn

Th (Stanley 1995) For all grafts

$$
\text { G, } \quad x_{G}(x, 1)=\sum_{\pi \in \pi_{G}} \mu(0, \pi) P_{\text {Ape }(\pi)}
$$

Consequently $w x_{6}(x, 1)$ is p-positive

Our approach to 1 -positivity of $\omega X_{G}(x, t)$

Let P be a poset on $[\mathrm{m}]$ A word $a_{4} \cdot a_{k}$ over alphabet [a]

- has a p-descent at i if

$$
a_{i}>_{p} a_{i+1}
$$

- has a left-to-right P-max at $i>1$ If $a_{i}>_{p} a_{j} \quad \forall j<i$
Let In p be the set of all $\alpha \in S_{1}$,
such that σ has no P-descants and no left-forsight p-max

Ex $\quad P=$

$$
\begin{aligned}
& \sigma=21(5) 436 \quad \dot{n_{p}} \quad n 0 \\
& \sigma=43\left(\widehat{5 \omega_{0}^{2}} 16 \notin n_{p}\right. \\
& \theta=432156 \eta_{p}
\end{aligned}
$$

Th (Sh $+W$) Let $G=\operatorname{lnc}(P)$ where P is a nat unit int order. Then
corf of $\frac{1}{n} P_{(n)}$ in the powersun expansion of, $w X_{\operatorname{lnc}(\rho)}(x, t)$ is

$$
\sum_{\sigma \in n_{p}} f_{\{\sigma(i), \sigma(j)\}_{G}(\sigma)}
$$

cost of $z_{\lambda}^{-1} p_{\lambda}$

Given a poses P on $[n]$ and $\lambda \vdash n$, let $M_{p_{1}}$ be the set of fillings of young dragon λ with $1,2, \ldots, n$, used once each, so that the cows have no

$$
\text { . } P \text {-descent }
$$

- left-to-right P-max

It $\quad l(\lambda)=1 \quad M_{p, \lambda}=M_{p}$
Ex $P={ }^{5} 0_{2}^{6} \quad-\quad=(3,2,1)+6$

$$
\begin{array}{ll}
43 \\
56
\end{array}
$$

1
$\frac{\text { Conjecture }(\operatorname{Sn} \alpha w) / T h \text { (Athonusiadis) }}{L e t \quad G=\operatorname{lnc}(D) P \text { nat unt inl }}$ older, and $\lambda+n$. Then woef $z_{\lambda}^{-1} P_{\lambda}$ in powersim expansio of $w X_{6}(x, t)$ is

$$
\sum_{T \in \eta_{\rho_{j} \lambda}} t^{\operatorname{lnv_{G}(r_{w}(\tau)\rangle }}
$$

rw (t) is permin S_{n} obtyined by reading T in row order
$\operatorname{rar}\left(\begin{array}{l}432 \\ 56 \\ 1\end{array}\right)=432561$

$$
\begin{aligned}
& \text { Ex } P={ }_{1}^{3} \operatorname{lr}_{2}^{4} \quad G=\underset{1234}{a \rightarrow \infty} \\
& \lambda=(2,2) \\
& n_{p_{,} \lambda}=\left\{\begin{array}{cccccccc}
12 & 12 & 21 & 21 & 34 & 43 & 34 & 43 \\
34 & 43 & 34 & 43 & 12 & 12 & 21 & 21
\end{array}\right\}
\end{aligned}
$$

G-invers ion

$$
\sum_{T \in \eta_{p, \lambda}} t^{\ln v_{c}(\gamma w(T))}=1+3 t^{1}+3 t^{2}+t^{3}
$$

Note this is palindromic a unsmodal
p-unimodality of $w X_{6}(x, t)$
implies $\sum_{T \in \eta_{\rho, \lambda}} t^{\operatorname{lnv}_{G}(\operatorname{rr}(T))}$ is unimolat
This us still open.

Athanasiadis' proof - next time

