
ROOK THEORY AND HYPERGEOMETRIC SERIES

James Haglund

Abstract. The number of ways of placing k non-attacking rooks on a Ferrers board
is expressed as a hypergeometric series, of a type originally studied by Karlsson and
Minton. Known transformation identities for series of this type translate into new
theorems about rook polynomials.

1. Introduction.

Since its introduction in the 1940’s by Riordan and Kaplansky, rook theory has
continued to find application to an ever-expanding list of topics in Enumerative
Combinatorics. In this article we establish a connection between rook polyno-
mials and certain types of hypergeometric series, and explore the consequences.
Notation : LHS and RHS are abbreviations for “left hand side” and “right hand
side” respectively. N = the nonnegative integers, Z= the integers, C = the complex
numbers, “COEF(zk) in” means “the coefficient of zk in”.

Consider an infinite grid of squares, with the same labelling as the points in the
first quadrant having positive integral coordinates; the lower left-hand square has
(column,row) coordinates (1,1), etc.. A board B is a finite subset of these squares,
together with a value of n, called the number of columns. The squares of B must
satisfy (i, j) ∈ B =⇒ 1 ≤ i ≤ n, 1 ≤ j. If in addition (i, j) ∈ B =⇒ j ≤ n (all
the squares of B are contained in the n × n grid) then B is called admissible. See
Figure 1.

Let rk(B) be the number of ways of placing k rooks on the squares of B (through-
out the article, all placements are assumed to be non-attacking, i.e. no two rooks
in the same row, and no two in the same column). If B is admissible, let ak(B) be
the number of ways of placing n non-attacking rooks on the square n×n grid with
exactly n − k rooks on B. The ak are usually called “hit” numbers. Of particular
interest is an, which equals the number of permutations on n letters which avoid
the “forbidden” positions encoded by the squares of B (we can identify a rook on
square (i, j) with the condition that i is sent to j in the associated permutation).
The ak(B) can be expressed in terms of the rk(B) via an identity of Riordan and
Kaplansky [KaRi]

∑
k

k!rn−k(B)(z − 1)(n−k) =
∑

k

zkan−k(B). (1)

If B is not admissible, define ak(B) via (1) (although they no longer count permu-
tations).
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Figure 1. The shaded squares (1,2), (2,1), and (3,3) of the 3 × 3 grid
form an admissible board B.

A Ferrers board B is a board with the property that (i, j) ∈ B implies all squares
to the right and below (i, j) are also in B. More formally, (i, j) ∈ B =⇒ (k, p) ∈ B
for i ≤ k ≤ n and 1 ≤ p ≤ j . These boards can be identified with the Ferrers
graphs of partitions. They were introduced by Foata and Schützenberger, who
proved that every Ferrers board is rook equivalent (has the same rook numbers rk)
to a unique board with strictly increasing column heights. Ferrers boards satisfy
the important factorization theorem of Goldman, Joichi, and White [GJW1]

n∑
k=0

x(x − 1) · · · (x − k + 1)rn−k = PR(x, B), (2)

where PR(x, B) =
∏n

i=1(x + ci − i + 1), with ci = the height of the ith column of
B.

Throughout this article, if B is a Ferrers board it will represent the board of
Figure 2, indicated by the following notation: B = B(h1, d1; h2, d2; . . . ; ht, dt). In
order to allow leading columns of height zero and for other technical reasons we
allow the hi to be nonnegative integers, but the di will be strictly positive integers.
Note that PR(x, B) can be written as

t∏
i=1

(x + Hi − Di + 1)di , (3)

where Hi := h1 + . . .+hi, Di := d1 +d2 + . . .+di (this notation will be used often),
and (x)k := x(x + 1) · · · (x + k − 1).

For some time researchers have sought a q-version of (1), the inclusion-exclusion
identity of Riordan and Kaplansky. For arbitrary boards this problem has never
been completely solved, although partial solutions occur in [ChRo] and [JoRo].
For Ferrers boards Garsia and Remmel [GaRe] introduced a q-version which has
found a number of applications [Din1], [Din2], [Hag1]. In particular, Solomon
[Sol] has developed connections between the monoid of matrices over a finite field
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Figure 2. The Ferrers board B = B(h1, d1; . . . ; ht, dt).

and q-rook polynomials, and Ding has unearthed an exciting connection between
algebraic topology and rook placements by showing that the Poincaré polynomials
of cohomolgy for certain algebraic varieties are expressable as q-rook polynomials.

Other recent work in rook theory incorporates the cycle structure of simple
directed graphs associated to rook placements. This idea originated in a 1989
paper of Gessel [Ges1]; if a rook occupies square (i, j), draw an edge from i to j in
the associated digraph (otherwise do not draw such an edge). The resulting digraph
(on n vertices) will consist of a certain number of cycles and a certain number of
directed paths (vertices with no incident edges count as a directed path of length
one). See Figure 3.

Let
rk(y) :=

∑
placements of k rooks on B

ynumber of cycles,

so for the placement of Figure 3 we associate y2. If B is admissible, we can define

ak(y, B) :=
∑

placements of n rooks on n×n square
n−k rooks on B

ynumber of cycles. (4)

It should be mentioned that the special problem of determining a0(B), which can be
viewed as the permanent of a matrix, has been studied in great detail by Shevelev.
His work also contains some results on determining a0(y, B); see [Shev] and the
long list of references it contains.

Chung and Graham introduced the function

C(B; x, y) :=
∑

k

x(x − 1) · · · (x − k + 1)rn−k(y). (5)
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Figure 3. A rook placement and the associated digraph.

One of their results can be expressed as follows [ChG]

C(B; x, y) =
∑

S
0 to n rooks on B

each rook in a cycle

(y − 1)number of cycles of S

×
∑

T
n rooks on n×n square

S⊆T

(
x + |T ∩ B| − |S|

n − |S|
)

where the inner sum is over all placements T of n non-taking rooks which contain
the rooks in S, and |T ∩ B| is the number of rooks in T on B. In the outer sum,
each rook in S must be in a cycle.

Gessel [Ges2] found a more compact expansion for C(B; x, y);

C(B; x, y) =
∑

k

an−k(y)
(x + y)kx(x − 1) · · · (x − n + k + 1)

(y)n
. (6)

He also noted that ∑
k

(y)krn−k(y)(z − 1)n−k =
∑

k

zkan−k(y). (7)

Shortly after a preprint of Chung and Graham’s influential work became avali-
able, the author and Dworkin noticed independently that a version of the factor-
ization theorem for Ferrers boards held for rk(y) [EHR], [Dwo]

∑
k

x(x − 1) · · · (x − k + 1)rn−k(y) =
∏
ci≥i

(x + ci − i + y)
∏
ci<i

(x + ci − i + 1). (8)
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Dworkin also investigated if and when the LHS of (8) factors for those boards
obtained by permuting the columns of a Ferrers board.

Earlier Stanley and Stembridge [StS] developed a version of rook theory which
takes into account the cycle structure of rook placements and the associated di-
graph. To describe this we need two partitions α, β. The αi are the lengths of
the directed paths, and the βi are the lengths of the cycles. In their theory they
weight a given placement by fα(Y )pβ(Y )

∏
i mi(α)!, where the fα are the forgotten

symmetric functions in the set of variables Y, pβ are the power-sum symmetric
functions, and mi(α) is the multiplicity of i in α (see [Mac] for background on
symmetric functions).

Chow has recently considered a more general function;

C(B; X, Y ) :=
∑
α,β

mα(X)pβ(Y )rα,β(B)
∏

i

mi(α)!

(in this article X,Y denote sets of variables and x,y complex variables). Here rα,β(B)
is the number of rook placements on B whose digraph has directed path type α and
cycle type β, and mα is the monomial symmetric function. If X is chosen so that∑

i xk
i = pk(X) = (−1)k+1pk(Y ), C(B; X, Y ) reduces to the Stanley-Stembridge

function. If pk(X) ≡ x, and pk(Y ) ≡ y, we get Chung and Graham’s C(B; x, y).
Here we are using the well-known fact that identities involving symmetric functions
can be interpreted as polynomial identities in the pk.

Chow proved a “reciprocity” theorem for C(B; X, Y ), which says that for ad-
missible boards B

C(B; X, Y ) :=
∑

0 to n rooks on Bc

0 rooks on B

fα(X, Y )pβ(Y )
∏

i

mi(α)!(−1)n+`(α), (9)

where `(α) is the number of parts of α, and X ,Y indicates the union of the two
sets of variables X and Y (so pk(X, Y ) = pk(X) + pk(Y )). Bc is the complement
board consisting of those squares in the n × n grid not a part of B. In section 2
we introduce another parameter into Chow’s function, and obtain a result which
contains reciprocity and (1) as special cases. We also derive a more general form of
(6), as well as an identity relating the rk(y, B) and the rk(y, Bc), which generalizes
a result of Chow and Gessel.

A t+1Ft hypergeometric series is defined by

t+1Ft

[
c1, c2, . . . ct+1

b1, . . . bt
; z

]
=

∞∑
k=0

(c1)k(c2)k · · · (ct+1)
k!(b1)k(b2)k · · · (bt)k

zk. (10)

If the argument z is unity it will be omitted. The series in (10) converges absolutely
if |z| < 1 or if z = 1 and <(

∑t
i=1 bi −

∑t+1
i=1 ci) > 0. The study of these functions

goes back to Euler and Gauss. One of Gauss’ famous results is

2F1

[
a, b

c

]
=

Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

, <(c − a − b) > 0. (11)

If one of the numerator parameters in (10) is a negative integer, the series termi-
nates. The terminating case of (11) is the V andermonde convolution

2F1

[−n, b
c

]
=

(c − b)n

(c)n
. (12)
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In section 3 we show how to express the rook numbers rk(y, B), when B is the
Ferrers board of Figure 2, in terms of a terminating t+1Ft with unit argument. Ex-
pressions are also derived for the hit numbers ak(y, B). These involve an important
type of t+2Ft+1 hypergeometric series known as balanced series, the sum of whose
numerator parameters is one less then the sum of its denominator parameters (i.e.
c1 + . . . + ct+2 − b1 − . . . − bt+1 = −1.

In section 4 we derive a recurrence for the ak, which turns out to be equivalent to
the known fact that a balanced, terminating t+2Ft+1 can be expressed as a sum of
balanced, terminating t+1Ft’s. A special case of this is the famous Pfaff- Saalschütz
result

3F2

[−n, a, b
c, a + b − c − n + 1

]
=

(c − a)n(c − b)n

(c)n(c − a − b)n
. (13)

Special cases of this recurrence for the ak are shown to have a purely combinatorial
interpretation in terms of permutations of multisets.

For Ferrers boards, the rook polynomials appearing in (1) can themselves be
expressed in terms of a t+1Ft of the following general type

t+1Ft

[
x, b1 + d1, . . . bt + dt

b1, . . . bt
; z

]
,

where di ∈ N. The series for the rk and the ak also have the property of the numer-
ator parameters being a positive integer more than the corresponding denominator
parameters. We will say these series are of Karlsson − Minton type; they were
first studied by Minton [Min, 1970] who proved

t+2Ft+1

[
w, x, b1 + d1, . . . bt + dt

x + 1, b1, . . . bt

]
=

Γ(x + 1)Γ(1 − w)
Γ(1 + x − w)

t∏
i=1

(bi − x)di

(bi)di

, (14)

where x, bi ∈ C , w ∈ Z, di ∈ N, and w ≤ −n. Karlsson [Kar] showed that (14)
holds for w ∈ C , <(w) < 1 − n, and later Gasper [Gasp] found an interesting
transformation which includes (14) as a special case

t+2Ft+1

[
w, x, b1 + d1, . . . , bt + dt

x + c + 1, b1, . . . , bt

]
=

Γ(1 + x + c)Γ(1 − w)
Γ(1 + x − w)Γ(c + 1)

t∏
i=1

(bi − x)di

(bi)di

×t+2Ft+1

[−c, x, 1 + x − b1, . . . , 1 + x − bt

x + 1 − w, 1 + x − b1 − d1, . . . , 1 + x − bt − dt

]
, (15)

where w, c, x, bi ∈ C , di ∈ N, and <(c − w) > n − 1.
When this transformation is expressed as a relation between ak’s of different

boards, special cases have simple combinatorial interpretations, but in general we
get new identities. These are of a rather technical nature; a typical result involving
generalized Stirling numbers is given in Example 3.2.
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Gasper also derived two q-versions of (15), which involve basic hypergeometric
series. A t+1φt is defined by

t+1φt

[
x, c1, . . . , ct

b1, . . . , bt
; z

]
=

∞∑
k=0

(x; q)k(c1; q)k · · · (ct; q)k

(q; q)k(b1; q)k · · · (bt; q)k
zk,

where |z| ≤ 1, q is a real variable satisfying 0 < q < 1, and (w; q)k = (1 − w)(1 −
wq) · · · (1−wqk−1). We will denote the infinite product

∏
k≥0(1−wqk) by (w; q)∞.

If the meaning is clear from context, (w; q)k and (w; q)∞ will be abbreviated by
(w)k and (w)∞, respectively. Replacing x by qx, ci, bi by qci and qbi , and letting
q → 1−, the t+1φt above approaches the t+1Ft with the same arguments.

Recently Chu has derived a bilateral extension of (15) [Chu] (a bilateral series
is a sum from k = −∞ to +∞, which can be viewed as a sum of two t+1Ft’s). He
also derived a q-version of this which contains both of Gasper’s q-versions of (15)
as special cases.

In chapters 4 and 5 of Gasper and Rahman’s book [GaRa], and also in work
of Sears [Sea1],[Sea2] and Slater [Sla], there are a number of expansions of the
following general type

one t+1φt = a sum of t + 1 other t+1φt’s. (16)

Although it appears to have gone unnoticed, we show how the Chu-Gasper q-
version of (15) can be obtained by specializing one of the identities of type (16)
to the Karlsson-Minton case (all of the coefficients of the t+1φt’s on the RHS of
(16) turn out to be zero except for one). This same equation also shows how to
express the series on the LHS of (14) as a finite sum of Gamma factors when the
di are allowed to be positive or negative integers. There is also an analogue of (16)
for bilateral series (see [GaRa], eq. (5.4.4)) , due to Slater, which contains Chu’s
bilateral extension of (15) as a special case.

Not surprisingly, the q-rook polynomials Rk of Garsia and Remmel can be ex-
pressed as basic hypergeometric series of Karlsson-Minton type (where each numer-
ator parameter is qdi times the corresponding denominator parameter). Although
for the most part our results in section 5 are q-versions of results in previous sec-
tions, using the Heine transformation

2φ1

[
x, b

c
; z

]
=

(b)∞(xz)∞
(c)∞(z)∞

2φ1

[
c/b, z

xz
; b

]
(17)

we derive some identities which have no analog in the q = 1 case. Actually we use
the following corollary of Bowman’s 1993 generalized Heine transformation [Bow1],
[Bow2]

t+1φt

[
x, c1, . . . , ct

b1, . . . , bt
; z

]
=

(xz)∞
(z)∞

t∏
i=1

(ci)∞
(bi)∞

∞∑
k=0

(z)k

(xz)k(q)k
hk(b; c), (18)

where

hk(b; c) :=
∑

m1+...+mt=k

(q)k

(q)m1 · · · (q)mt

[c1, b1]m1 · · · [ct, bt]mt ,
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with [w, y]k := (w − y)(w − qy) · · · (w − qk−1y). When specialized to series of
Karlsson-Minton type, the case di ≡ 1 of (18) reduces to a special case of a bibasic
version of the Heine transformation (which contains two independent bases p and
q) due to Fine.

2. Reciprocity and the x-parameter.

We now introduce another parameter into Chow’s function, and then extend his
reciprocity theorem. Define

C(B; X, Y ; z) :=
∑
α,β

mα(X)pβ(Y )rα,β(B)(1 − z)n−`(α)
∏

mi(α)!. (19)

Theorem 2.1 Let B be an admissible board. Then

C(B; X, Y ; z) = (−1)n
∑

k

zkCk(B; X, Y ),

where

Ck(B; X, Y ) =
∑

0 to n−k rooks on Bc

k rooks on B

fα(X, Y )pβ(Y )
∏

i

mi(α)!(−1)`(α).

Note that if z = 0 this reduces to (9).
Proof : Our proof closely follows Chow’s proof of (9) [Cho,pp.7-8]. For a placement
κ of 0 to n rooks on the n × n grid, let Tκ = the set of rooks of κ on B, and Eκ =
the set of rooks of κ on Bc. By definition,

(−1)nCn−k(B; X, Y ) =
∑

κ
Eκ=∅

mα(κ)(X)pβ(κ)(Y )
∏

mi(α)!
(

n − `(α)
n − k

)
(−1)n−k

=
∑

κ
Eκ=∅

mα(κ)(X)pβ(κ)(Y )
∏

mi(α)!
∑

γ⊆Tκ
|γ|=n−k

(−1)n−k

(since n − `(α) = the number of rooks in κ, all of which are presently on B; here
|γ| is the sum of all the parts of γ)

=
∑

κ

mα(κ)(X)pβ(κ)(Y )
∏

mi(α)!
∑

γ⊆Tκ
|γ|=n−k

(−1)n−k
∑

W⊆Eκ

(−1)|W |

(since the inner sum is 0 unless Eκ = ∅)

=
∑

κ

mα(κ)(X)pβ(κ)(Y )
∏

mi(α)!
∑

S⊆Tκ∪Eκ
|S∩Tκ|=n−k

(−1)|S|

=
∑

S
S has n−k rooks on B
and 0 to k rooks on Bc

∑
κ

mα(κ)(X)pβ(κ)(Y )
∏

mi(α)!(−1)|S|
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by reversing the order of summation. Using exactly the same argument as in [Cho,
p.8], the inner sum over κ equals

(−1)n+`(α)fα(X, Y )pβ(Y )
∏

mi(α)!. �

(none of the results in the rest of the paper depend on Theorem 2.1, or its special
case (21), so no further details are included).

The extent to which theorems about rook polynomials and applications of reci-
procity extend to the symmetric functions Ck(B; X, Y ) is an interesting topic for
research in its own right; the focus of this article, however, is the study of the fol-
lowing special case of Ck(B; X, Y ), a new two-parameter version of the hit numbers.

Definition For any board B, define ak(x, y, B) by

∑
k

(x)krn−k(y)(z − 1)n−k =
∑

k

zkan−k(x, y, B). (20)

If B is the triangular board (see Figure 5), the ak(x, 1, B) have been introduced
independently in recent work of Steingrimsson [Ste]. His approach is different from
ours, involving partially ordered sets, and there is little duplication between our
results.

Using known facts about symmetric functions [Cho1], one finds that if pk(X) ≡
−x and pk(Y ) ≡ y, Cn−k(B; X, Y ) reduces to ak(x, y). This same choice for X,Y
in Theorem 2.1 then gives (for admissible B)

ak(x, y, B) =
∑

n−k rooks on B
0 to k on Bc

(−1)`(α)(y − x)`(α)y
`(β), (21)

where α,β are the directed path type and cycle type of the associated rook place-
ment. Note that

ak(y, y) =
∑

n−k rooks on B
k on Bc

ynumber of cycles (22)

since (y − y)`(α) = 0 unless there are no directed paths, which means there are n
rooks on the n × n grid.

In the rest of this section we extend some of the known algebraic identities
satisfied by ak(B) to ak(x, y, B).

Theorem 2.2 (For Ferrers boards, a q-version of the case j = n, x = 1, y = 1 of
this identity occurs in work of Garsia and Remmel [GaRe]). Let B be any board,
and assume j is a nonnegative integer. Then

∞∑
k=0

(
x + k − 1

k

)
aj(−k, y, B)zk =

(−1)j

(1 − z)j+x

j∑
k=0

(
n − k

n − j

)
ak(x, y, B)zk.

P roof : LHS times (1 − z)j+x =

(
∞∑

m=0

zm(−1)m

(
j + x

m

)
)(

∞∑
k=0

(
x + k − 1

k

)
aj(−k, y, B)zk)
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=
∑
s≥0

zs
∑
k≥0

(x)k

(1)k
aj(−k, y, B)(−1)s−k

(
j + x

s − k

)

=
∑
s≥0

zs
∑
k≥0

(x)k

(1)k
(−1)s−k

(
j + x

s − k

) ∑
m≥0

(−k)mrn−m

(
n − m

n − j

)
(−1)j−m

(by (20))

=
∑
s≥0

zs
∑
m≥0

rn−m

(
n − m

n − j

)
(−1)j−m+s

∑
k≥0

(−k)m
(x)k

(1)k

(
j + x

s

)
(−s)k

(j + x − s + 1)k

(since
(
j+x
s−k

)
=

(
j+x

s

)
(−1)k (−s)k

(j+x−s+1)k
)

=
∑
s≥0

zs

(
j + x

s

) ∑
m≥0

rn−m

(
n − m

n − j

)
(−1)j+sm!

∑
k≥m

(
k

m

)
(x)k

(1)k

(−s)k

(j + x − s + 1)k

=
∑
s≥0

zs

(
j + x

s

) ∑
m≥0

rn−m

(
n − m

n − j

)
(−1)j+sm!

×
∑
u≥0

k=u+m

(
u + m

m

)
(x)m(x + m)u(−s)m(−s + m)u

m!(m + 1)u(j + x − s + 1)m(j + x − s + 1 + m)u

=
∑
s≥0

zs

(
j + x

s

) ∑
m≥0

rn−m

(
n − m

n − j

)
(−1)j+sm!

× (x)m(−s)m

m!(j + x − s + 1)m
2F1

[
x + m, −s + m

j + x − s + m + 1

]

=
∑
s≥0

zs

(
j + x

s

) ∑
m≥0

rn−m

(
n − m

n − j

)
(−1)j+s

× (x)m(−s)m

(j + x − s + 1)m

(j − s + 1)s−m

(j + x − s + m + 1)s−m

(by the Vandermonde convolution (21))

=
∑
s≥0

zs
∑
m≥0

(x)mrn−m(−1)j+s (−s)m(j − s + 1)s−m(j − m)n−j

(1)s(1)n−j

=
∑
s≥0

zs
∑
m≥0

(x)mrn−m(−1)j+s+m (j − s + 1)n+s−m−j

(1)s−m(1)n−j

=
∑
s≥0

zs
∑
m≥0

(x)mrn−m(−1)j+s−m (n − m)!
(s − m)!(n − j)!

(n − s)!
(j − s)!(n − s)!
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=
∑
s≥0

zs(−1)j

(
n − s

n − j

) ∑
m≥0

(x)mrn−m(−1)s−m

(
n − m

n − s

)

= RHS times (1 − z)j+x. �

Theorem 2.3 (The j = n case of this is due to Gessel [Ges2]). For any board B,

aj(x, y, B) =
j∑

k=0

ak(y, y, B)
(

n − k

n − j

)
(x)k(y − x)j−k

(y)j
(−1)j−k.

P roof : Start by setting x = y in Theorem 2.2 to get

∞∑
k=0

(
y + k − 1

k

)
aj(−k, y, B)zk =

(−1)j

(1 − z)j+y

j∑
k=0

(
n − k

n − j

)
ak(y, y, B)zk. (23)

Now assume x ∈ N, x ≥ j. Then

aj(−x, y, B) =
(

y + x − 1
x

)−1

× COEF(zx) in LHS of (23)

=
(

y + x − 1
x

)−1

× COEF(zx) in
(−1)j

(1 − z)j+y

j∑
k=0

(
n − k

n − j

)
ak(y, y, B)zk

= (−1)j

(
y + x − 1

x

)−1 j∑
k=0

(
n − k

n − j

)
ak(y, y, B)

(
j + y − 1 + x − k

x − k

)

= (−1)j

j∑
k=0

(
n − k

n − j

)
ak(y, y, B)

x!(y + j)x−k

(x − k)!(y)x

= (−1)j

j∑
k=0

(
n − k

n − j

)
ak(y, y, B)

(−x)k(−1)k(y + x)j−k

(y)j
.

Replacing x by −x proves the theorem for x ∈ Z, x ≤ −j. By definition of
ak(x, y, B), it is clear that both sides are polynomials in x; two polynomials which
have infinitely many common roots are identical. �

In an earlier version of this paper, the author used (15) to derive Theorem 3.1,
a result related to Theorem 2.7 below, but which holds for Ferrers boards only.
The author is indebted to the referee for supplying him with Lemma 2.4 below
(which can be thought of as a version of (15) which holds for polynomials) and for
suggesting that it could be used to derive a result which holds for any admissible
(not neccessarily Ferrers) board. This led to Theorem 2.7, which is analogous to
(but does not contain) Theorem 3.1. Before proving it we need to derive a few
lemmas; Lemma 2.5 extends well-known identities for rk(1, B) and ak(1, 1, B).

Lemma 2.4 Let P be any polynomial with <(c + 1 − w − deg(P )) > 0. Then

∞∑
j=0

(w)j(x)j

j!(x + c + 1)j
P (j) =

Γ(1 + x + c)Γ(1 − w)
Γ(1 + x − w)Γ(c + 1)

∞∑
j=0

(−c)j(x)j

j!(x + 1 − w)j
P (−x − j).
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Proof : It suffices to prove Lemma 2.4 for the basis polynomials P (u) = (−x− c−
u)d, d = 0, 1, . . . , for which both sides above can be eva luated by Gauss’ theorem
(eq. (11)). �

Lemma 2.5 Let B be any board. Then

k!rn−k(y, B) =
k∑

j=0

(
k

j

)
(−1)k−j

n∑
s=0

j(j − 1) · · · (j − s + 1)rn−s(y, B), (24)

and

ak(x, y, B) =
k∑

j=0

(
n + x

k − j

)
(−1)k−j

(
x + j − 1

j

) n∑
s=0

j(j−1) · · · (j−s+1)rn−s(y, B).

(25)
Proof : The RHS of (24) equals

∑
s≥0

s!rn−s(y)
∑
j≥s

(
k

j

)
(−1)k−j

(
j

s

)

=
∑
s≥0

s!rn−s(y)δs,k

by the Vandermonde convolution. Equation (25) can be proven similarly; the RHS
of (25) equals

∑
s

rn−s(y)
∑
j≥s

(
n + x

k − j

)
(−1)k−j (x)jj(j − 1) · · · (j − s + 1)

(1)j

=
∑

s

rn−s(y)
∑

u≥0,j=u+s

(
n + x

k − u − s

)
(−1)k−u−s (x)u+s(u + 1)s

(1)u+s

=
∑

s

rn−s(y)
∑
u≥0

(
n + x

k − s

)
(−1)u (s − k)u

(n + x − k + s + 1)u

× (−1)k−s−u (x)s(x + s)u

(s + 1)u

(
u + s

u

)

=
∑

s

rn−s(y)
(

n + x

k − s

)
(−1)k−s(x)s

∑
u≥0

(−k + s)u(x + s)u

(1)u(n + x − k + s + 1)u

=
∑

s

(x)srn−s(y)
(

n + x

k − s

)
(−1)k−s (n − k + 1)k−s

(n + x − k + s + 1)k−s

(by the Vandermonde convolution)

=
∑

s

(x)srn−s(y)
(

n − s

k − s

)
(−1)k−s.�
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Lemma 2.6 For any board B and k ∈ N,

ak(x, y, B) =
(

n + x

n − k

)
(−1)k

∑
j≥0

(k − n)j(x)j

j!(x + 1 + k)j

×
n∑

s=0

(−x − j)(−x − j − 1) · · · (−x − j − s + 1)rn−s(y, B).

P roof : From (25),

ak(x, y, B) =
(

n + x

k

)
(−1)k

∑
j≥0

(−k)j(x)j

j!(n − k + x + 1)j
P (j),

where P (j) is the inner sum on the RHS of (25). Applying Lemma 2.4 with w = −k
and c = n − k we get

ak(x, y, B) =
(

n + x

k

)
(−1)k Γ(1 + x + n − k)Γ(k + 1)

Γ(1 + x + k)Γ(n − k + 1)

×
∑
j≥0

(k − n)j(x)j

j!(x + 1 + k)j
P (−x − j),

which simplifies to Lemma 2.6. �

Theorem 2.7 Let B be an admissible board. Then if x − y ∈ N,

ak(x, y, B) = an−k(x, y, D),

where D is the board obtained by starting with Bc, and then affixing an x− y by n
rectangle with unlabelled squares to the bottom of Bc (so rooks on this rectangular
part do not contribute any cycles).

Proof : Since by (22) ak(y, y, Bc) = an−k(y, y, B), (20) implies the polynomial
identity

∑
k

(y)krn−k(y, Bc)zk(1 − z)n−k =
∑

k

(y)krn−k(y, B)(z − 1)n−k,

the case y = 1 of which appears in [Rio]. Letting z = z + 1 and comparing
coefficients of zn−s on both sides we get

rn−s(y, B) =
1

(y)s

n∑
m=0

(−1)n−mrn−m(y, Bc)(y)m

(
m

m − s

)
.

Plugging this into the inner sum on the RHS of Lemma 2.6 and then reversing the
sum on m and s we get

ak(x, y, B) =
(

n + x

n − k

)
(−1)k

∑
j≥0

(k − n)j(x)j

j!(x + 1 + k)j

n∑
m=0

rn−m(y, Bc)(−1)n−m(y)m
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×
n∑

s=0

(−x − j)(−x − j − 1) · · · (−x − j − s + 1)
(y)s

(
m

m − s

)
.

The inner sum over s can be evaluated by (12), resulting in

ak(x, y, B) =
(

n + x

n − k

)
(−1)n−k

∑
j≥0

(k − n)j(x)j

j!(x + 1 + k)j

×
n∑

m=0

rn−m(y, Bc)(x + j − y)(x + j − y − 1) · · · (x + j − y − m + 1).

The inner sum on the RHS above can be rewritten as

n∑
m=0

rn−m(y, D)j(j − 1) · · · (j − m + 1)

since by a standard argument (as in [GJW1]) both these sums count the number
of ways to put n non-attacking rooks on the board obtained by affixing a j by n
rectangle to the bottom of D, or equivalently a x − y + j by n rectangle to the
bottom of BC , without labelling the squares of the rectangle (thus no cycles are
contributed). The theorem now follows from (25) with k replaced by n − k and B
by D.

Corollary 2.8 Let B be any admissible board. Then for x, y ∈ C∑
k

(x)krn−k(y, B)(z + 1)k(−z)n−k =

∑
s

rs(y, Bc)
∑

k

(x)k(x − y)(x − y − 1) · · · (x − y − n + k + s + 1)
(

n − s

k

)
zn−k.

P roof : Using (20), Theorem 2.7 can be written in polynomial form as

∑
k

(x)krn−k(y, B)zk(1 − z)n−k =
∑

k

(x)krn−k(y, D)(z − 1)n−k. (26)

Now rn−k(y, D) equals

∑
s

rs(y, Bc)(x − y)(x − y − 1) · · · (x − y − n + k + s + 1)
(

n − s

k

)

since if we wish to put n − k rooks on D, we can put s on Bc in rs(y, Bc) ways,
then choose n− k− s of the n− s columns left unattacked in

(
n−s

k

)
ways, then put

n− k− s rooks in these selected columns in the x− y by n rectangular part of D in
(x− y)(x− y − 1) · · · (x− y −n+ k + s+1) ways. Using this in (26), then reversing
the summation on s and k, and finally replacing z by z + 1 yields the corollary. �
Remark 1: Corollary 2.8 can be written in the following form∑

k

(x)k(z − 1)krn−k(y, B) =
∑

s

rs(y, Bc)(y − x)n−s(−1)s
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×2F1

[
s − n, x

x − y − n + s + 1 ; z
]

.

Remark 2: Comparing the coefficient of zn on both sides of Corollary 2.8 gives the
identity

∑
k

(x)krn−k(y, B)(−1)n−k =
∑

s

rs(y, Bc)(x− y)(x− y − 1) · · · (x− y − n + s + 1).

This is equivalent to the k = n case of (21), which Chow derived from (9) and
which Gessel also derived by a different method [Ges2]. Recently Chow has given
a combinatorial proof of the y = 1 case of this identity [Cho3]. Perhaps this proof
could be extended to include Corollary 2.8. Another interesting issue that remains
unresolved is how the identity obtained by comparing coefficients of zk for k 6= n
in Corollary 2.8 relates to (21), and more generally if there is a symmetric function
version, along the lines of Theorem 2.1, of Corollary 2.8.

3. Ferrers Boards and Hypergeometric Series.

The remainder of this article will focus on Ferrers boards, for which the explicit
formulas for rk and ak occurring in Lemma 2.5 can be expressed as hypergeometric
series.

Definition Recalling that Hi := h1 + . . . hi and Di := d1 + . . . di, let

PR(x, y, B) :=
t∏

i=1

(Hi − Di + x + y)di .

Remark : Although PR depends only on the sum x + y, we choose to view it as a
function of both x and y in order to keep the connection with cycle-counting clear
in what follows.

Definition Call a Ferrers board B = B(h1, d1; h2, d2; ...; ht, dt) regular if B satisfies
Hi ≥ Di for 1 ≤ i ≤ t. Also, let ei := Hi − Di + y (we will use this notation often
throughout the rest of the article!).

For B a regular Ferrers board, we now convert (24) and (25) into hypergeometric
notation. Note that for j ∈ N,

(ei + j)di = (ei)di

(ei + di)j

(ei)j

(assuming ei 6= 0), hence

PR(j, y, B) = PR(0, y, B)
t∏

i=1

(ei + di)j

(ei)j
ei 6= 0, 1 ≤ i ≤ t. (27)

Now Hj ≥ Dj for j ≤ t implies the ith column of B is ≥ i for all i ≤ n. Thus by
(3), for B regular (8) can be written as

∑
k

x(x − 1) · · · (x − k + 1)rn−k(y, B) = PR(x, y, B).
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Plugging this into (24) and (25) we get, for k ∈ N,

k!rn−k(y, B) =
k∑

j=0

(
k

j

)
(−1)k−jPR(0, y, B)

t∏
i=1

(ei + di)j

(ei)j

= PR(0, y, B)(−1)k
t+1Ft

[−k, e1 + d1, . . . , et + dt

e1, . . . , et

]
, (28)

and

ak(x, y, B) =
k∑

j=0

(
n + x

k − j

)
(−1)k−j (x)j

(1)j
PR(0, y, B)

t∏
i=1

(ei + di)j

(ei)j

= PR(0, y, B)
(

n + x

k

)
(−1)k

× t+2Ft+1

[−k, x, e1 + d1, . . . , et + dt

n + x − k + 1, e1, . . . , et

]
. (29)

Remark 1: Assume for the moment that y ∈ N. Then clearly PR(x, y, B) =
PR(x, 1, C), where C = B(h1 + y − 1, d1; h2, d2; . . . ; ht, dt) is the board obtained
from B by replacing h1 by h1+y−1. Then by (24) and (25), we see that rk(y, B) =
rk(1, C), and ak(x, y, B) = ak(x, 1, C). Now say we have an algebraic identity
involving the rk’s or ak’s. Typically this will be a polynomial or rational function
identity in the hi’s and di’s. Thus it is easy to translate back and forth between
identites with the y parameter and those without just by changing the value of h1.
Remark 2: The formulas above assume B is regular (Hi ≥ Di for 1 ≤ i ≤ t). As a
general rule, any formula for Ferrers boards involving the y parameter in sections
3, 4, or 5 will make this same assumption. If Hi < Di for some i, not all of the
factors on the RHS of (8) have the parameter y in them. For this reason it is more
convienient to work with regular boards; otherwise we can proceed by modifying
the definition of PR(x, y, B) appropriately. For the sake of simplicity, lets consider
the case where none of the factors have a y in them, and use (2) instead of (8) to
get

ak(x, 1, B) =
k∑

j=0

(
n + x

k − j

)
(−1)k−j (x)j

(1)j
PR(j, 1, B).

Unfortunately, Hi < Di implies that PR(0, 1, B) = 0, so (27) cannot be used as is.
Let u = min j ≥ 0 : PR(j, 1, B) 6= 0. Then it is easy to see that PR(j, 1, B) 6= 0
for j ≥ u. Thus

ak(x, 1, B) =
k∑

j=u

(
n − x

k − j

)
(−1)k−jPR(j, 1, B)

=
∑
s≥0

j=u+s

(
n + x

k − s − u

)
(−1)k−s−u (x)u+s

(1)u+s
PR(u + s, 1, B)
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= PR(u, 1, B)
(

n + x

k − u

)
(−1)k−u (x)u

(1)u

×
∑
s≥0

(−k + u)s(x + u)s

(n + x − k + 1 + u)s(u + 1)s

t∏
i=1

(Hi − Di−1 + u + 1)s

(Hi − Di + u + 1)s
.

If Hp−Dp = min(i){Hi−Di, 1 ≤ i ≤ t}, then by definition of u, Hp−Dp+u+1 = 1,
so we get

ak(x, 1, B) = PR(u, 1, B)
(

n + x

k − u

)
(−1)k−u (x)u

(1)u

×t+2Ft+1

[−k + u, x + u, g1 + d1, . . . , gp + dp, . . . , gt + dt

m, u + 1, g1, . . . , ĝp, . . . , gt

]
, (30)

where gi := Hi −Di + u + 1, and m = n + x− k + u + 1. Similarly, k!rn−k(B) can
be written as a t+1Ft.
Remark 3: Since the ak are balanced, while the k!rn−k are not, most of our at-
tention will be focused on the ak. From results on the ak one can often deduce
properties of the rk since by (28) and (29),

k!rn−k(y) = lim
x→∞

ak(x, y)(
n+x

k

) .

Equation (8) shows that for Ferrers boards, an(x, y) can be written as a product
of linear factors in x and y. Combining this with the k = n case of (29) we get

t∏
i=1

(ei)di

(
n + x

n

)
(−1)n

t+2Ft+1

[−n, x, e1 + d1, . . . , et + dt

x + 1, e1, . . . , et

]

=
∏

i

(ei − x)di . (31)

This is equivalent to the case w = −n of (14), the Karlsson-Minton summation
formula. We now translate Gasper’s transformation (15) into a statement about
the ak.

Theorem 3.1 Let B be a regular Ferrers board. Then

ak(x, y, B) = an−k(x, 1 + x − y + n − Ht − p, B̂p),

where B̂p is obtained by first rotating the n × Ht grid containing B 180 degrees,
keeping the squares in this grid which were not in B, affixing a p × n rectangle
to the bottom, and finally relabelling so that the square that was (i, j) is now
(n + 1− i, Ht + p + 1− j). The parameter p can be any positive integer, so long as
B̂p is regular. See Figure 4.
Proof : Let si := 1 + x − ei − di. By (29),

ak(x, y, B) =
t∏

i=1

(ei)di

(
n + x

k

)
(−1)k

×t+2 Ft+1

[−k, x, e1 + d1, . . . , et + dt

n + x − k + 1, e1, . . . , et

]
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Figure 4. The Ferrers board B̂p = B(p, dt; . . . ; h2, d1).

=
t∏

i=1

(ei)di

(
n + x

k

)
(−1)k Γ(n − x − k + 1)Γ(k + 1)

Γ(n − k + 1)Γ(k + 1 − x)

t∏
i=1

(ei − x)di

(ei)di

×t+2 Ft+1

[−(n − k), x, 1 + x − e1, . . . , 1 + x − et

x + k + 1, s1, . . . , st

]

(by (15))

=
(

n + x

k

)
(−1)n−k Γ(n + x − k + 1)k!

(n − k)!Γ(k + 1 + x)

t∏
i=1

(si)di

× t+2Ft+1

[−(n − k), x, s1 + d1, . . . , st + dt

x + k + 1, s1, . . . , st

]
. (32)

Let ỹ = 1 + x − y + n − Ht − p. Then

1 + x − et = 1 + x − (Ht − n + y) = p + ỹ = H1(B̂p) − D0(B̂p) + ỹ

1 + x − et−1 = 1 + x − (Ht−1 − Dt−1 + y) = n − Ht + ht − dt + 1 + x − y

= p + ht − dt + ỹ = H2(B̂p) − D1(B̂p) + ỹ

...

1+x−e1 = 1+x−(H1−D1+y) = p+(ht+. . .+h2)−(dt+. . .+d2)+n−Ht+1+x−y−p

= Ht(B̂p) − Dt−1(B̂p) + ỹ.
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Figure 5. The triangular board of side n.

Thus

RHS of (32) =
(

n + x

n − k

)
(−1)n−k

t∏
i=1

(ẽi)d̃i

×t+2Ft+1

[−(n − k), x, ẽ1 + d̃1, . . . , ẽt + d̃t

x + k + 1, ẽ1, . . . , ẽt

]

(where ẽi := Hi(B̂p) − Di(B̂p) + ỹ, and d̃i := dt−i+1(B) = di(B̂p))

= an−k(x, 1 + x − y + n − Ht − p, B̂p) by (29). �

Example 3.2 Let B be the triangular board of size n, so B is regular and Ht = n.
See Figure 5. From [EHR],

rn+1−k(y, B) =
∑

λ
k blocks

ynum(λ) := S2(n + 1, k, y)

say, where the sum is over all set partitions λ of n + 1 elements into k blocks, and
num(λ) := the number of values of i, 1 ≤ i ≤ n, such that the ith and (i + 1)st

elements are in the same block. For example S2(3, 2, y) = 2y + 1 since there are 3
set partitions of {a, b, c} into 2 blocks

{a, b}{c} → y, {a, c}{b} → 1, {a}{b, c} → y.

Clearly B̂1 = B so after some simplification (20) and Theorem 3.1 imply

n∑
k=1

(x)k−1S2(n, k, y)(z − 1)n−k =
n∑

k=1

(x)k−1S2(n, k, x − y)zk−1(1 − z)n−k.
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A version of Theorem 3.1, with y set equal to 1, also holds for non-regular boards;

Corollary 3.3 If B is any Ferrers board

ak(x, 1, B) = an−k(x, x + n − Ht − p, B̂p),

with B̂p as in Theorem 3.1.
Proof : Start with any regular board C having the same di as B. By Theorem
3.1 we have ak(x, y, C) = an−k(x, x + n − Ht − p, Ĉp). Using (25), view both sides
above as polynomials in the hi. If we increase a given hi by a positive integer, the
equation still holds since Ĉp will be regular for the same value of p. Thus we have
two polynomials in the hi, equal for all sufficiently large choices of the hi, and hence
equal for all hi. Now let hi = hi(B). �

One of the well-known identities for Ferrers boards is

∞∑
k=0

PR(k, 1, B)zk =
1

(1 − z)n+1

n∑
k=0

zkak(1, 1, B).

Translating the x,y version of this (the case j = n of Theorem 2.2, together with
(31)) into hypergeometric series notation led to the next result. This gives a new
expression for series of Karlsson-Minton type with argument z, and shows they are
very close to being polynomials, albeit with complicated coefficients.

Theorem 3.4 Let x, bi, z ∈ C , di ∈ N, and Dt = n. Also fix the branch of log z
which is analytic for z ∈ C \(−∞, 0], with −π < arg(z) < π (the principal branch).
Then for z ∈ C \[1,∞)

t+1Ft

[
x, b1 + d1, . . . , bt + dt

b1, . . . , bt
; z

]
=

1
(1 − z)n+x

n∑
k=0

(
n + x

k

)
(−1)k

× t+2Ft+1

[−k, x, b1 + d1, . . . , bt + dt

n + x − k + 1, b1, . . . , bt

]
zk.

P roof : Start by assuming |z| < 1. Expanding (1 − z)n+x times the LHS above in
powers of z, using absolute convergence and collecting terms,

(1 − z)n+x
∞∑

j=0

(x)j(b1 + d1)j · · · (bt + dt)j

(1)j(b1)j · · · (bt)j
zj

=
∑

k

zk
k∑

j=0

(
n + x

k − j

)
(−1)k−j (x)j(b1 + d1)j · · · (bt + dt)j

(1)j(b1)j · · · (bt)j

=
∑

k

zk(−1)k

(
n + x

k

) k∑
j=0

(−k)j(x)j(b1 + d1)j · · · (bt + dt)j

(1)j(n + x − k + 1)j(b1)j · · · (bt)j
.

The inner sum above is zero for k > n from the w = −k, c = n − k case of (15)
(since the RHS of (15) has Γ(c + 1) in the denominator). Since the RHS is just a
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polynomial in z divided by (1− z)n+x, the analytic continuation of the equation is
immediate. �

Set

Q :=
PR(0, y, B)−1

(1 − z)n+x

n∑
k=0

ak(x, y, B)zk.

The fact that Q can be expressed via Theorem 3.4 and (29) as a hypergeometric
series has some other consequences. For example, it is well known that Q satisfies
a differential equation, namely [Bai,p.8]

{D(D + e1 − 1) · · · (D + et − 1) − z(D + x)(D + e1 + d1) · · · (D + et + dt)}Q = 0,

where D is the operator z d
dz . Also, Q can be expressed as an integral in various

ways [Bai], [Erd], [Kar], [MacR]. For example, a result of Erdélyi can be phrased as

F (x, z, B) = (1 − z)n+xdt!(−1)dt
i

2π

∫
C

F (x, zρ, B′)
(1 − ρ)dt+1(1 − zρ)n−dt+x

dρ,

with C any closed contour circling the point ρ = 1 counterclockwise, B′ the trun-
cated board B′ = B(h1, d1; . . . ; ht−1, dt−1), and F (x, z, B) :=

∑n
k=0 ak(x, y, B)zk.
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Figure 6. The board for a well-poised series.

Well-poised boards

A t+1Ft

[
x, c1, . . . , ct

b1, . . . , bt
; z

]
is said to be well-poised if x + 1 = b1 + c1 =

. . . = bt + ct. Together with balanced series they form the most important class of
hypergeometric series. When expressed in terms of the ak, the well-poised case of
(15) has a particularly simple form;

ak(x, 1, B) = an−k(x, 1, B), (33)

with B the board of Figure 6.
There are analogoues of (16) for well-poised series, due to Sears and Slater, as

well as for well-poised bilateral series (see Chapters 4 and 5 of [GaRa]). We will
not do a systematic exploration of the Karlsson-Minton cases of these at this time,
leaving this as a topic for future research. Instead we content ourselves with listing
a result on well-poised series which is an easy corollary of Gaspers transformation.

Theorem 3.5 Let di ∈ N, n odd, set wi := (1 + x − di)/2. Then for x ∈ C ,

t+2Ft+1

[
w, x, w1 + d1, . . . , wt + dt

−w + x + 1, w1, . . . , wt
; 1

]
= 0, (34)

where <(−2w + 1 − n) > 0, and

t+1Ft

[
x, w1 + d1, . . . , wt + dt

w1, . . . , wt
;−1

]
= 0, (35)

where <(−x − n) > 0.
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Proof : Letting c = −w and bi = wi in (15) the series in (15) become well-poised
and we get LHS of (34) = (−1)n times LHS of (34). This implies (34) since n is
odd. Equation (35) will follow from the q-version of (15) discussed in section 5 (see
the remark following (57)).

4. Generating Functions and Recurrence Relations.

Two pFt’s are called contiguous if they differ by exactly one in exactly one
parameter (except that they must have the same argument z). Gauss derived the
contiguous relations for the 2F1, and Rainville [Rai1] did the general pFt. We use
an abbreviated notation indicated as follows

F = t+1Ft

[
x, c1, . . . , ct

b1, . . . , bt
; z

]
, F (x+) = t+1Ft

[
x + 1, c1, . . . , ct

b1, . . . , bt
; z

]
,

F (b1−) = t+1Ft

[
x, c1, . . . , ct

b1 − 1, . . . , bt
; z

]
.

In the case p = t + 1, the simplest of the Rainville recurrence relations are

(x − ck)F = xF (x+) − ckF (ck+), k = 1, ..., t

and
(x − bk + 1)F = xF (x+) − (bk − 1)F (bk−), k = 1, ..., t (36)

as well as relations with x and ci interchanged. There are also a set of p+1 linearly
independent relations of a more complicated nature, each involving t+2 contiguous
functions.

Theorem 3.4 can be restated in the form

PR(0, y, B)(1 − z)n+x
t+1Ft

[
x, e1 + d1, . . . , et + dt

e1, . . . , et
; z

]
=

n∑
k=0

zkak(x, y, B). (37)

Hence any contiguous relation satisfied by the t+1Ft on the LHS above can be
translated into a recurrence involving the ak. For future reference we list some of
the relations obtained by this procedure below; the proofs are routine, so they are
omitted. The notation B+hi+dj refers to the board obtained from B by increasing
hi and dj by one each, and leaving the other parameters fixed. Similar remarks
apply to B − hi − dj . Also, let fi := ei + di.

Under the assumption that all boards underappearing in the following formulas
are regular, the first of Rainville’s relations yields (there are two cases to consider,
since x is a different type of parameter then the fi)

ak(x, y, B + hi + di) = xak(x + 1, y, B) + (fi − x)ak(x, y, B)− (fi − x)ak−1(x, y, B)

and

(fi − fs)(ak(x, y, B) − ak−1(x, y, B) = ak(x, y, B + hi + di) − ak(x, B + hs + ds),
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where 1 ≤ i, s ≤ t, 0 ≤ k ≤ n + 1. The second simple relation gives

(x− ei + 1)(ak(x, y, B)− ak−1(x, y, B)) = xak(x + 1, y, B)− ak(x, y, B + di + hi+1)

for 1 ≤ i ≤ t, ht+1 = 0, and

(fj −ei+1)(ak(x, y, B)−ak−1(x, y, B)) = ak(x, y, B+hj +dj)−ak(x, B+di +hi+1)

where 1 ≤ i, j ≤ t. The first type of more complicated contiguous relation ([Rai2,
Eq. (28), p.84]) translates into

xak(x, y, B) + nak−1(x, y, B) = xak(x + 1, y, B)+
t∑

j=1

(ej − x)
∏t

s=1(fs − ej)∏t
s=1
s 6=j

(es − ej)
(ak−1(x, y, B − dj − hj+1)− ak−2(x, y, B − dj − hj+1),

and

fmak(x, y, B) + (n + x − fm)ak−1(x, y, B) = ak(x, y, B + dm + hm)+
t∑

j=1

(ej − x)
∏t

s=1(fs − ej)∏t
s=1
s 6=j

(es − ej)
(ak−1(x, y, B − dj − hj+1)− ak−2(x, y, B − dj − hj+1),

where 1 ≤ m ≤ t. The second type of more complicated relation ([Rai2, Eq. (30),
p.85]) gives

ak(x, y, B) = ak(x − 1, y, B)+
t∑

j=1

∏t
s=1(fs − ej)∏t
s=1
s 6=j

(es − ej)
(ak−1(x, y, B − dj − hj+1))

for 0 ≤ k ≤ n, and

ak(x, y, B) = (fi − 1)ak(x, y, B − di − hi)+
t∑

j=1

(x − ej)

∏t
s=1
s 6=i

(fs − ej)∏t
s=1
s 6=j

(es − ej)
ak−1(x, y, B − dj − hj+1),

where 1 ≤ i ≤ t, and 0 ≤ k ≤ n. Note that the relations above can be viewed as
statements involving balanced series via (29).

In the remainder of this section we investigate recurrence relations which can be
derived by combinatorial methods. Some identities best described as “iterated” con-
tiguous relations for balanced series are obtained. We also show that special cases
of Saalschütz summation and Whipple’s 4F3 transformation have simple combina-
torial interpretations involving permutations of multisets.

By exploiting a connection between compositions of vectors and rook placements
[Hag2, Thm. 22], the following generating function for rook polynomials of Ferrers
boards is obtained

(
t∑

i=1

xi + yi +
∑

1≤i≤j≤t

xiyj)k =
∑

h,d∈Nt

t∏
i=1

xhi

i ydi

i

hi!di!
rHt+Dt−k(B(h1, d1; . . . ; ht, dt))k!.
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Using this we derive a generating function for ak(x, 1, B);

(1 −
t∑

i=1

xi −
t∑

i=1

yi + (1 − z)
∑

1≤i≤j≤t

xiyj)−x

=
∞∑

k=0

(−x

k

)
(−1)k(

t∑
i=1

xi + yi + (z − 1)
∑

1≤i≤j≤t

xiyj)k

=
∞∑

k=0

(x)k

k!(z − 1)k
(

t∑
i=1

(z − 1)xi + (z − 1)yi +
∑

1≤i≤j≤t

(z − 1)xi(z − 1)yj)k

=
∞∑

k=0

(x)k

k!

∑
h,d∈Nt

t∏
i=1

xhi

i ydi

i

hi!di!
(z − 1)Ht+Dt−krHt+Dt−k(B(h1, d1; . . . ))k!

=
∑

h,d∈Nt

t∏
i=1

xhi

i ydi

i

hi!di!

∑
k≥0

(x)k(z − 1)Ht+Dt−krHt+Dt−k(B(h1, d1; . . . ))

=
∑

h,d∈Nt

t∏
i=1

xhi

i ydi

i

hi!di!
(x)Ht

∑
s≥0,k=Ht+s

(x + Ht)s(z − 1)n−srn−s(B(h1, d1; . . . )),

since rj = 0 if j > n. As usual, n = Dt. Thus by (20),

(1 −
t∑

i=1

xi −
t∑

i=1

yi + (1 − z)
∑

1≤i≤j≤t

xiyj)−x

=
∑

h,d∈Nt

t∏
i=1

xhi

i ydi

i

hi!di!
(x)Ht

n∑
k=0

an−k(x + Ht, 1, B)zk. (38)

By differentiating (38) we can derive recurrence relations for the ak. For example,
if we differentiate with respect to z we get

−x(1 −
t∑

i=1

xi −
t∑

i=1

yi + (1 − z)
∑

1≤i≤j≤t

xiyj)−x−1(−
∑
i≤j

xiyj)

= (−x
∑

h,d∈Nt

t∏
i=1

xhi

i ydi

i

hi!di!
(x + 1)Ht

n∑
k=0

an−k(x + 1 + Ht, 1, B)zk)(−
∑
i≤j

xiyj)

=
∑

h,d∈Nt

t∏
i=1

xhi

i ydi

i

hi!di!
(x)Ht

n∑
k=0

an−k(x + 1 + Ht, 1, B)zk−1k.

Comparing coefficients of
∏t

i=1
x

hi
i y

di
i

hi!di!
zk in the last two lines above gives

∑
1≤i≤j≤t

x(x + 1)Ht−1an−1−k(x + Ht, 1, B − hi − dj)hidj

= (k + 1)(x)Htan−k−1(x + Ht, 1, B).
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Replacing k by n − 1 − k this becomes

(n − k)ak(x, 1, B) =
∑

1≤i≤j≤t

hidjak(x, 1, B − hi − dj). (39)

The t = 1 case of (39) yields another proof of (13); assuming B is regular, the
y = 1 case of (29) implies, with b := H1 − D1 + 1, and n := d1,

(n − k)
(

n + x

k

)
(−1)k(b)n 3F2

[−k, x, b + n
n + x − k + 1, b

]

= n(b)n

(
n + x − 1

k

)
(−1)k

3F2

[−k, x, b + n − 1
n − 1 + x − k + 1, b

]
. (40)

Although in the proof of (40) we assumed n and b are positive integers, since both
sides are rational functions of n and b, (40) holds for n,b ∈ C . After cancelling
common factors, iterating m times and taking the limit as m approaches infinity
we get, with f := b + n,

3F2

[−k, x, f
b, f + x − k − b + 1

]

= lim
m→∞

(−x + k + b − f)m(b − f)m

(k + b − f)m(−x + b − f)m
3F2

[−k, x, f − m
b, f − m − b − k + x + 1

]

=
Γ(k + b − f)Γ(−x + b − f)
Γ(−x + k + b − f)Γ(b − f) 2F1

[−k, x
b

]

=
(b − f)k(b − x)k

(b − x − f)k(b)k

(by the Vandermonde convolution) which is (13).
One can derive other relations by differentiating (38) with respect to x, xp, or yp

for 1 ≤ p ≤ t. Differentiating with respect to x produces a logarithm on the LHS,
which doesn’t yield an easily describable relation. Below we list the relations you
get by differentiating with respect to xp and yp, 1 ≤ p ≤ t, omitting the details.
Differentiating with respect to xp;

ak(x, 1, B + hp) = ak(x, 1, B) +
t∑

j=p

dj(ak(x, 1, B − dj) − ak−1(x, 1, B − dj)).

Differentiating with respect to yp;

ak+1(x, 1, B + dp) = xak(x+ 1, 1, B)+
p∑

j=1

hj(ak+1(x, 1, B − hj)− ak(x, 1, B − hj)).

Using (37), (38) can be expressed as

(1 −
t∑

i=1

xi − z
t∑

i=1

yi + (z − 1)
∑

1≤i≤j≤t

xiyj)−x =
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∑
h,d∈Nt

t∏
i=1

xhi

i ydi

i

hi!di!
(x)Ht(1 − z)n+x+Ht

×t+1Ft

[
x + Ht, c1 + d1, . . . , ct + dt

c1, . . . , ct
; z

]
PR(0, 1, B), (41)

where ci := Hi − Di + 1. Actually the RHS of (41) is not completely correct as
written, since if ci < 0 for some i, the t+1Ft has to be shifted as in (30). We can
obtain recurrence relations for series with argument z as before by differentiating
(41). For example, if we differentiate with respect to xp, after simplification we get

t∏
j=p

fj

bj
t+1Ft

[
w, f1, . . . , fp−1, fp + 1, . . . , ft + 1

b1, . . . , bp−1, bp + 1, . . . , bt + 1 ; z
]

= t+1Ft

[
w, f1, . . . , ft

b1, . . . , bt
; z

]

+
t∑

j=p

dj

bj

t∏
i=j+1

fi

bi
t+1Ft

[
w, f1, . . . , fj−1, fj + 1, . . . , ft + 1

b1, . . . , bj−1, bj + 1, . . . , bt + 1 ; z
]

, (42)

where b0 = 1, bi ∈ C , di ∈ N, n = Dt, |z| < 1, or |z| = 1 and <(−w+
∑

i bi−fi) > 0.
Michael Schlosser [Sch] has found a complicated formula, involving many differ-

ent q-parameters, which includes the z = 1 case of (42). He has also noted that (42)
holds for di ∈ C , and provided the following simple proof. Comparing coefficients
of zk on both sides, and pulling out common terms, we have only to check that

t∏
j=p

fj + k

bj + k
= 1 +

t∑
j=p

fj − bj

bj + k

t∏
i=j+1

fi + k

bi + k
.

= 1 +
t∑

j=p

{
t∏

i=j

fi + k

bi + k
−

t∏
i=j+1

fi + k

bi + k
}

which telescopes to the LHS. �

A different type of recurrence for the ak can be derived by starting with the
j = n case of Theorem 2.2. Letting Cp be the board B − hp − dp,

1
(1 − z)n+x

n∑
k=0

ak(x, y, B(h1, d1; . . . ))zk =
∞∑

k=0

(x)k

k!
PR(k, y, B)zk

=
∞∑

k=0

(x)k

k!
(ep + k)dp−1(ep + dp + k − 1)

∏
i≥1,i6=p

(ei + k)diz
k

=
∞∑

k=0

(x)k

k!
PR(k, y, Cp)kzk + (ep + dp − 1)

∞∑
k=0

(x)k

k!
PR(k, y, Cp)

= z
d

dz

1
(1 − z)n−1+x

n−1∑
k=0

ak(x, y, Cp)zk +
(ep + dp − 1)
(1 − z)n−1+x

n−1∑
k=0

ak(x, y, Cp)zk
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= z{−(−x + 1 − n)
(1 − z)n+x

n−1∑
k=0

ak(x, y, Cp)zk +
1

(1 − z)n−1+x

×
n−1∑
k=0

ak(x, y, Cp)kzk−1} +
(ep + dp − 1)
(1 − z)n−1+x

n−1∑
k=0

ak(x, y, Cp)zk.

Multiplying both sides by (1 − z)n+x and comparing coefficients of zk we get

ak(x, y, B) = −(−x + 1 − n)ak−1(x, y, Cp) + kak(x, y, Cp)

−(k − 1)ak−1(x, y, Cp) + (ep + dp − 1)(ak(x, y, Cp) − ak−1(x, y, Cp))

= ak(x, y, Cp)(k + ep + dp − 1) + ak−1(x, y, Cp)(n + x − k − ep − dp + 1)

= ak(x, y, Cp)(k + ep + dp − 1) + ak−1(x, y, Cp)(n − ep − dp + x − k + 1). (43)

Theorem 4.1 If Bj = B(h1, d1; . . . ; hp−1, dp−1; hp−j, dp−j; hp+1, dp+1; . . . ; ht, dt)
is the board obtained from a regular Ferrers board B by decreasing hp and dp by
j (here we assume j ≥ hp, dp), then

ak(x, y, B) = j!
k∑

s=k−j

as(x, y, Bj)
(

ep + dp + s − 1
s − k + j

)(
n − ep − dp − s + x

k − s

)
.

P roof : By induction on j. The case j = 0 is trivial, and the case j = 1 is (43).
By the induction hypothesis, abbreviating ep + dp by Tp,

ak(x, y, B) = (j − 1)!
k∑

s=k−j+1

as(x, y, Bj−1)
(

Tp + s − 1
s − k + j − 1

)(
n − Tp − s + x

k − s

)
.

Next apply (43) to as(x, y, Bj−1) to get

ak(x, y, B) = (j − 1)!
k∑

s=k−j+1

{as(x, y, Bj)(s + ep + dp − (j − 1) − 1)

+as−1(x, y, Bj)(n − (j − 1) − (ep + dp − (j − 1)) + x − s + 1)}

×
(

ep + dp + s − 1
s − k + j − 1

)(
n − ep − dp − s + x

k − s

)

= (j − 1)!
k∑

s=k−j

as(x, y, Bj)
(

ep + dp + s − 1
s − k + j

)(
n − ep − dp − s + x

k − s

)

×{ (j − k + s)(ep + dp − j + s)
ep + dp + s − (j − k + s)

+
(ep + dp + s)(k − s)

ep + dp + s − (j − k + s)
}.

The numerator of the expression inside the brackets is j times the denominator,
which completes the proof. �
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A modification of the method leads to a slightly different recurrence;

1
(1 − z)n+x

n∑
k=0

ak(x, y, B(h1, d1; . . . ))zk =
∞∑

k=0

(x)k

k!
PR(k, y, B)zk

=
∞∑

k=0

(x)k

k!
(ep + k + 1)dp−1(ep + k)zk

∏
i≥1,i6=p

(ei + k)di

= ep

∞∑
k=0

(x)k

k!
PR(k, y, B − dp − hp+1)zk + z

d

dz

∞∑
k=0

(x)k

k!
PR(k, y, B − dp − hp+1)

(if p = t, hp+1 = 0). Proceeding as before we end up with

ak(x, y, B) = ak(x, y, B − dp − hp+1)(k + Hp − Dp + y)

+ak−1(x, y, B − dp − hp+1)(n − Hp + Dp − y + x − k). (44)

Theorem 4.2 Let B be a regular Ferrers board. Let B(j) = B(h1, d1; . . . ; hp, dp −
j; hp+1 − j, dp+1; . . . ; ht, dt) be the board obtained from B by decreasing dp and
hp+1 by j (here we assume j ≤ dp, hp+1). Also, if p = t, j ≤ dt, and B(j) is the
board obtained from B by decreasing dt by j. Then

ak(x, y, B) = j!
k∑

s=k−j

as(x, y, B(j))
(

ep + j + s − 1
s − k + j

)(
n − ep − s − j + x

k − s

)
.

P roof : By induction on j. The case j = 0 is trivial, and the case j = 1 is (44).
By the induction hypothesis,

ak(x, y, B) =

(j − 1)!
k∑

s=k−j+1

as(x, y, B(j−1))
(

ep + j − 1 + s − 1
s − k + j − 1

)(
n − ep − s + x − j + 1

k − s

)
.

Next apply (44) to as(x, y, B(j−1)) to get

ak(x, y, B) = (j − 1)!
k∑

s=k−j+1

{as(x, y, B(j))(s + ep − (−(j − 1)))

+as−1(x, y, B(j))(n − (j − 1) − (j − 1) − ep + x − s)}

×
(

ep + j + s − 2
s − k + j − 1

)(
n − ep − s + x − j + 1

k − s

)

= (j − 1)!
k∑

s=k−j

as(x, y, B(j))
(

ep + j + s − 1
s − k + j

)(
n − ep − s − j + x

k − s

)

×{ (j − k + s)(n − ep + x − s − j + 1)
n − ep + x − s − j − (k − s) + 1

+
(k − s)(n − 2j − ep + x + 1 − s)
n − ep + x − s − j − (k − s) + 1

}.
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As before, the expression inside the brackets is j. �

Corollary 4.3 Let B′ = B(h1, d1; . . . ; hp−1, dp−1; hp + hp+1 − dp, dp+1; . . . ; ht, dt)
be the Ferrers board obtained from B by removing the “pth step” (if p = t, B′ =
B(h1, d1; . . . ; ht−1, dt−1)). Assume dp ≤ hp + hp+1, or that p = t. Then

ak(x, y, B) = dp!
k∑

s=k−dp

as(x, y, B′)
(

ep + dp + s − 1
s − k + dp

)(
n − ep − dp − s + x

k − s

)
,

where as(x, y, ∅) = δs,0.
Proof : Set j = dp in Theorem 4.1, or in Theorem 4.2. �
Remark : Corollary 4.3, phrased in terms of hypergeometric series, is due to Mac-
Robert [MacR, Eq. (30), p.365]. It shows how to express a terminating, balanced
t+2Ft+1 in terms of terminating, balanced t+1Ft’s. If we let t = 1, then B′ = ∅, and
there is only one term on the RHS. After simplification, this reduces to the Pfaff-
Saalschütz summation formula mentioned earlier. Letting t = 2, and using the fact
that as(x, y, B′) can be summed, the RHS turns out to be a terminating, balanced
4F3 (as does the LHS). This theorem is known as Whipple′s transformation [Bai].
MacRobert derived this from a multisum identity of his [MacR, p.363], which can
be rephrased as the following recurrence

t+1Ft

[
x, c1, . . . , ct

b1, . . . , bt
; z

]
=

∞∑
m=0

(b1 − x)m(b1 − c1)m(c2)m · · · (ct)m

m!(b1)m · · · (bt)m
zm

× tFt−1

[
x + c1 − b1, c2 + m, . . . , ct + m

b2 + m, . . . , bt + m
; z

]
,

valid for |z| < 1. Note that if c1 = b1 + d1, d1 ∈ N, the RHS above reduces to a
finite sum of tFt−1’s.

The x = 1, y = 1 case of Corollary 4.3 was previously discovered by the author
[Hag1], in connection with the study of permutations of multisets. A permutation
σ of a multiset M is a linear list σ1σ2 · · ·σ|M| of the elements of M . Let Nk(v; r)
be the number of permutations of the multiset in which i occurs vi times, having
exactly k − 1 r-descents. An r-descent is a value of i, 1 ≤ i ≤ |M | − 1, such that
σi − σi+1 ≥ r. For example, if v = (2, 1, 1), then there are 12 permutations in
question;

a)3211 b)3121 c)3112 d)2311 e)2131 f)2113

g)1321 h)1312 i)1231 j)1213 k)1132 l)1123.

Permutations b, c, d, e, h, and i all have one 2-descent, and the others have no 2-
descents. Thus N2((2, 1, 1); 2) = 6 and N1((2, 1, 1); 2) = 6. Also, N3((2, 1, 1); 1) =
4, N2((2, 1, 1); 1) = 7, and N1((2, 1, 1); 1) = 1.

In [Hag1,p. 118] it is shown that

Nk(v; r)
t∏

i=1

vi! = an+1−k(Gv,r), (45)

where Gv,r is the Ferrers board of Figure 7. Applying Corollary 4.3 to this board,
using (45), and setting y = 1 gives the following identity

Nk(x,v, r) =
∑

s

Ns(x,v′, r)
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Figure 7. The Ferrers board Gv,r

×
(

v1 + . . . + vt−r + 1 − s

k − s

)(
vt−r+1 + . . . + vt + s + x − 2

vt − k + s

)
, (46)

where n = v1 + . . . + vt, v′ = (v1, . . . , vt−1), and by definition

Nk(x,v, r) := (−1)n−k+1
n−k+1∑

s=0

Nk+s(v, r)
(

s + k − 1
s

)( −x + s

n − k + 1

)
.

If x = 1 and r = 1, (46) reduces to

Nk(v, 1) =
vt∑

s=0

Nk−s(v′, 1)
(

vt + k − 1 − s

vt − s

)(
n − vt − k + 1 + s

s

)
,

which can be proven rather easily by a direct combinatorial argument [DiR].

5. q-Versions.

In 1986 Garsia and Remmel [GaRe] introduced a q-version of rook theory for
Ferrers boards. Throughout this section, let q be a real variable satisfying 0 < q < 1.
They define

Rk(B) :=
∑

placements C of k rooks on B

qinvC ,

where inv C is a certain statistic. To calculate it, cross out all squares on B below
and all squares on B to the right of each rook in C. The number of squares on B
not crossed out by this procedure is inv C.
Example : If C consists of rooks on squares (2, 1) and (4, 3) of the n = 4 case of
Figure 5, then inv C = 5.
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This definition led them to a q-version of (2)

n∑
k=0

[x][x − 1] · · · [x − k + 1]Rn−k(B) =
n∏

i=1

[x + ci − i + 1],

where [x] := 1−qx

1−q (which approaches x as q → 1) and ci is the height of the ith

column of B.
Garsia and Remmel also define a q-version of ak(B) as follows

n∑
k=0

Rn−k(B)[k]!zk
n∏

i=k+1

(1 − zqi) =
n∑

k=0

Ak(B),

where [k]! :=
∏k

i=1[i]. The polynomial Ak(B) equals ak(B) when q = 1.
A conjecture they made, that Rk(B) is a unimodal polynomial in q for all k and

all Ferrers boards, is still open. They were able to show that for admissible B,
Ak(B) ∈ N[q], and in [Hag1] it was demonstrated that their proof extends easily to
show that for such boards Ak(B) is a symmetric and unimodal polynomial in q.

In the special case of the triangular board, the polynomials Rk(B) are q-versions
of the Stirling numbers of the second kind. Wachs and White have introduced
the study of p,q-Stirling numbers [WaW], which are polynomials in two variables
p and q, and which can be defined as sums over rook placements on the triangular
board. An interesting open question is whether or not there is a p,q-version of rook
polynomials for general Ferrers boards with significant properties.

A cycle-counting version of Rk has been introduced in [EHR]. The following fact
is used in its description: given a placement of j non-attacking rooks in columns
1 through i of B, where 0 ≤ j ≤ i, then if ci (the height of the ith column of B)
is ≥ i, there is one and only one square in column i where a rook placement will
complete a cycle. If ci < i, there is no such square.

Given a placement C of k rooks on b, define si as follows; if ci < i, si = the
square (i, ci + 1), while if ci ≥ i, si is the unique square such that, considering only
the rooks from C in columns 1 through i−1, a rook on square si completes a cycle.
Set E = E(C) = the number of i such that there is a rook from C in column i on
or above square si. Then if we define

Rk(y, B) :=
∑

C
k rooks

[y]number of cycles of CqinvC+E

then [EHR]
n∑

k=0

[x][x − 1] · · · [x − k + 1]Rn−k(y, B)

=
∏
ci≥i

[x + ci − i + y]
∏
ci<i

[x + ci − i + 1] (47)

= PR[x, y, B]

say. We can use Rk(y, B) to define a q-version of ak(x, y, B);

n∑
k=0

[x][x + 1] · · · [x + k − 1]Rn−k(y, B)zk
n∏

i=k+1

(1 − zqi+x−1) :=
n∑

k=0

Ak(x, y, B)zk.
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An easy calculation shows that if q → 1, Ak(x, y, B) → ak(x, y, B).
The Chu-Gasper transformation for Karlsson-Minton type series discussed in

section 1 is

t+2φt+1

(
w, α, b1q

d1 , . . . , btq
dt

qcα, b1, . . . , bt
; q1−j/w

)
= αj (qα/w; q)∞(qc; q)∞

(qcα; q)∞(q/w; q)∞

×
t∏

k=1

(bk/α; q)dk

(bk; q)dk

t+2φt+1

(
1/c, α, qα/b1, . . . , qα/bt

qα/w, q1−d1α/b1, . . . , q1−dtα/bt
; q1+j−nc

)
(48)

with n = Dt, valid for j ∈ Z, di ∈ N, c, α, w, bi ∈ C , and |q/w| < |qj | < |qn−1/c|.
Together with (47), this can be used to find q-versions of almost all of the identities
in sections 3 and 4. Results without q-versions at present include the generating
function identity, the iterated contiguous relations, and several identities in section
2.

The proofs of the q-versions turn out to be routine, following the non-q-versions
step by step, so we simply list the theorems for future reference, without proof.
There is one exception; the details of the proof of the q-version of (43) are included,
since a slightly different method of proof was used in the q-case then in the non-
q-case. The proof of the q-version of (44) is similar to that of (43). We use the
standard notation

(w; q)n := (w)n := (1 − w)(1 − wq) · · · (1 − wqn−1),

[x] :=
1 − qx

1 − q
, [x]k := [x][x + 1] · · · [x + k − 1],

[
x

k

]
:=

[x][x − 1] · · · [x − k + 1]
[k]!

, (z; q)∞ := (z)∞ :=
∞∏

k=0

(1 − zqk).

In all of the following q-identities, B is assumed to be a regular Ferrers board,
except for equations (51),(52),(54), and (55), which hold for any Ferrers board.
After listing the q-versions of previous results, we finish by deriving some new ones
using transformations for q-series of all orders.

Lemma 5.1 For any regular Ferrers board B,

[k]!Rn−k(y) =
k∑

j=0

[
k

j

]
(−1)k−jq(

k−j
2 )PR[j, y, B], (49)

and

Ak(x, y, B) =
k∑

j=0

[
n + x

k − j

][
x + j − 1

j

]
(−1)k−jq(

k−j
2 )PR[j, y, B]. (50)

Lemma 5.2 For any regular Ferrers board B,

[k]!Rn−k(y) = PR[0, y, B](−1)kq(
k
2) t+1φt

(
q−k, qe1+d1 , . . . , qet+dt

qe1 , . . . , qet
; q

)
,
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and

Ak(x, y, B) = PR[0, y, B](−1)kq(
k
2)

[
n + x

k

]

×t+2φt+1

(
q−k, qx, qe1+d1 , . . . , qet+dt

qn+x−k+1, qe1 , . . . , qet
; q

)
.

Lemma 5.3 For any Ferrers board,

Ak(x, 1, B) = PR[u, 1, B](−1)k−uq(
k−u

2 )
[
n + x

k − u

][
x + u − 1

u

]

t+2φt+1

(
q−k+u, qx+u, qb1+d1 , . . . , qbp+dp , . . . , qbt+dt

qn+x−k+1+u, qu+1, qb1 , . . . , q̂bp , . . . , qbt
; q

)
, (51)

where bi := Hi − Di + 1 + u, p is chosen so that Hp − Dp = min(i) Hi − Di, and
u := Dp − Hp.

Theorem 5.4 For any regular Ferrers board B

Ak(x, y, B) = An−k(x, 1 + x − y + n − Ht − p, B̂p)qα,

where α := n(−x + y − n) + k(n + x + 1)+ area(B), with area(B) = the number
of squares in B =

∑
i Hidi. As in Theorem 3.1, p is any positive integer for which

B̂p is regular.

Corollary 5.5 For any Ferrers board B

Ak(x, 1, B) = An−k(x, x + n − Ht − p, B̂p)qβ , (52)

where β := n(−x + 1 − n) + k(n + x − 1)+ area(B).

Lemma 5.6

t+1φt

(
qx, w1q

d1 , . . . , wtq
dt

w1, . . . , wt
; z

)
=

(qn+xz)∞
(z)∞

n∑
k=0

zk

[
n + x

k

]
(−1)kq(

k
2)

×t+2φt+1

(
q−k, qx, w1q

d1 , . . . , wtq
dt

qn+x−k+1, w1, . . . , wt
; q

)
,

where x, wi, z ∈ C , di ∈ N, and n = Dt. This gives a new derivation of the analytic
continuation of the LHS to all of C .

Lemma 5.7 A q-version of (43);

Ak(x, y, B) = [k + ep + dp − 1]Ak(x, y, B − hp − dp)+

qk+ep+dp−2[n + x − ep − dp + 1 − k]Ak−1(x, y, B − hp − dp). (53)

Proof : By Lemma 5.1,

Ak(x, y, B) =
k∑

s=0

[
n + x

k − s

][
x + s − 1

s

]
(−1)k−sq(

k−s
2 )PR[s, y, B]
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=
k∑

s=0

[
n + x

k − s

][
x + s − 1

s

]
(−1)k−sq(

k−s
2 )[s + ep + dp − 1]PR[s, y, B − hp − dp]

=
k∑

s=0

[
n + x

k − s

][
x + s − 1

s

]
(−1)k−sq(

k−s
2 )PR[s, y, B − hp − dp]

{[k + ep + dp − 1] − qs+ep+dp−1[k − s]}

= [k + ep + dp − 1]
k∑

s=0

[
n + x

k − s

][
x + s − 1

s

]
(−1)k−sq(

k−s
2 )PR[s, y, B − hp − dp]

−qep+dp−1
k−1∑
s=0

[n + x]
[
n + x − 1
k − 1 − s

][
x + s − 1

s

]
(−1)k−sq(

k−s
2 )+sPR[s, y, B − hp − dp]

= [k+ep +dp −1]
k∑

s=0

{
[
n + x − 1

k − s

]
q(

k−s
2 ) +

[
n + x − 1
k − 1 − s

]
q(

k−1−s
2 )+n+x−1}

[
x + s − 1

s

]

×PR[s, y, B − hp − dp] − qep+dp−1
k−1∑
s=0

[n + x]
[
n + x − 1
k − 1 − s

][
x + s − 1

s

]

×(−1)k−sq(
k−1−s

2 )+k−1PR[s, y, B − hp − dp]

(since
[
n+x
k−s

]
=

[
n−1+x

k−s

]
+ qn+x−k+s

[
n−1+x
k−1−s

]
)

= [k + ep + dp − 1]Ak(x, y, B − hp − dp)+

Ak−1(x, y, B − hp − dp)(−qn+x−1[k + ep + dp − 1] + qk+ep+dp−2[n + x])

(by Lemma 5.1 applied with B = B − hp − dp). �

Theorem 5.8 Let j ∈ N, j ≤ hp, dp for some p in the range 1 ≤ p ≤ t. Then if B
is a regular Ferrers board, and Bj is the board described in Theorem 4.1,

Ak(x, y, B) = [j]!
k∑

s=k−j

As(x, y, Bj)
[
Tp − 1 + s

j − k + s

][
n − Tp + x − s

k − s

]
q(k−s)(Tp+k−j−1),

where As(x, y, ∅) = δs,0, and Tp = Hp − Dp−1 + y = ep + dp.

Theorem 5.9 Let B, j and B(j) be as in Theorem 4.2. Then

Ak(x, y, B) =

[j]!
k∑

s=k−j

As(x, y, B(j))
[
ep + s + j − 1

j − k + s

][
n − ep + x − s − j

k − s

]
q(k−s)(ep+k−1).

Corollary 5.10 Let dp, hp, hp+1, B, and B′ be as in Corollary 4.3. Then

Ak(x, y, B)

= [dp]!
k∑

s=k−dp

As(x, y, B′)
[
ep + dp + s − 1

dp − k + s

][
n − ep − dp + x − s

k − s

]
q(k−s)(ep+k−1).
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There are also q-versions of Theorems 2.2 and 2.3;

Theorem 5.11 For any Ferrers board B, with 0 ≤ j ≤ n, and |z| < 1,

∞∑
k=0

[
x + k − 1

k

]
Aj(−k, y, B)qjkzk = (−1)jq(

j
2) (qj+xz)∞

(z)∞

j∑
k=0

[
n − k

n − j

]
Ak(x, y, B)zk.

(54)

Theorem 5.12 For any Ferrers board B, with 0 ≤ j ≤ n,

Aj(x, y, B) = q(
j
2)

j∑
k=0

[
n − k

n − j

]
Ak(y, y, B)

(qx)k(qy−x)j−k

(qy)j
(−qx)j−kq−(k

2). (55)

The following general expansion for a t+1φt appears in [GaRa;p.110]; it is a
special case of identities of Sears and Slater

t+1φt

[
w, c1, . . . , ct

b1, . . . , bt
; z

]
=

(wz)∞(q/wz)∞
(z)∞(q/z)∞

t∏
i+1

(ci)∞(bi/w)∞
(bi)∞(ci/w)∞

×t+1φt

[
w, wq/b1, . . . , wq/bt

wq/c1, . . . , wq/ct
;

qb1 · · · bt

zwc1 · · · ct

]
+ idem(w; c1, . . . , ct), (56)

where |z| < 1, | qb1···bt

zwc1···ct
| < 1, and “idem(w; c1, . . . , ct)” stands for the sum of the t

expressions obtained by interchanging w and c1 in the infinite products and t+1φt

on the RHS of (56), then interchanging w and c2, etc.
Making the following replacments in (56); z = q1−j/w, b1 = cqα, c1 = α,

t = t + 1, bi = ei−1, ci = ei−1q
di−1 for i ≥ 2, we get (48) after some simplification.

If we make the same replacements but allow some of the di to be negative integers,
the RHS side of (56) reduces to a sum of terminating series. For example, if
d1 = −5, the term in the “idem” sum obtained by interchanging w and e1q

−5 will
have qe1q

−5/e1 = q−4 as one of the numerator parameters in the t+1φt which will
cause this series to terminate.

If we replace ci by biq
di in (56) we get

t+1φt

(
α, b1q

d1 , . . . , btq
dt

b1, . . . , bt
; q, z

)
=

(q/αz)∞(αz)∞
(q/z)∞(z)∞

×
t∏

i=1

(bi/α)di

(bi)di

t+1φt

(
α, qα/b1, . . . , qα/bt

q1−d1α/b1, . . . , q1−dtα/bt
; q, q1−n/αz

)

valid for α, bi, z ∈ C , di ∈ N, with n = Dt. Letting q approach 1 above and using
elementary facts about the q-Gamma function [GaRa, Ch.1] yields the hypergeo-
metric limit

t+1Ft

[
x, b1 + d1, . . . , bt + dt

b1, . . . , bt
; z

]
=

(−z)−x
t∏

i=1

(bi − x)di

(bi)di

t+1Ft

[
x, 1 + x − b1, . . . , 1 + x − bt

1 + x − b1 − d1, . . . , 1 + x − bt − dt
; z−1

]
(57)
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where x, bi, z ∈ C , di ∈ N, z ∈ C \[0,∞), and the principal branch of log z is used
to define zw, as was used in Theorem 3.4. Letting z = −1 and bi = (1 + x − di)/2
proves Theorem 3.5 when the argument in (34) is -1.

Another useful expansion for the general t+1φt is the corollary of Bowman’s gen-
eralized Heine discussed in section 1. Specializing the RHS of (18) to the Karlsson-
Minton case by setting ci = biq

di we get

t+1φt

[
x, b1q

d1 , . . . , btq
dt

b1, . . . , bt
; z

]
=

(xz)∞
(z)∞

t∏
i=1

1
(bi)di

×
∞∑

k=0

(z)k

(xz)k

∑
m1+...+mt=k

(−1)k
t∏

i=1

[
di

mi

]
bmi

i q(
mi
2 ). (58)

To translate this into a result on rook polynomials, note that the j = n case of
Theorem 5.11 is equivalent to (using (47))

∞∑
k=0

[
x + k − 1

k

]
PR[k, y, B]zk =

(qn+xz)∞
(z)∞

n∑
k=0

zkAk(x, y, B),

which reduces to an identity of Garsia and Remmel when x = y = 1. Now the LHS
above equals

PR[0, y, B]t+1φt

[
x, qe1+d1 , . . . , qet+dt

qe1 , . . . , qet
; z

]
,

so the bi = qei , x = qx case of (58) implies
Corollary 5.13 For any Ferrers board B

n∑
k=0

zkAk(x, y, B) =

1
(1 − q)n

n∑
k=0

(z)k(qx+kz)n−k(−1)k
∑

m1+...+mt=k

t∏
i=1

[
di

mi

]
qeimi+(mi

2 ).

The special case ei ≡ 1, di ≡ 1, x = 1 gives

n∑
k=0

zk
∑

σ∈Sn
k descents

qmajσ =
(z)n+1

(1 − q)n

n∑
k=0

(−1)k
(
n
k

)
qk

1 − zqk
,

where the inner sum on the LHS is over all permutations σ1σ2 · · ·σn of Sn having
k values of i for which σi > σi+1, and majσ :=

∑
i:σi>σi+1

i. Letting z = 1 in
Corollary 5.13 we get the simple identity

n∑
k=0

Ak(x, y, B) = [x]n.

The result
n∑

k=0

Rk(1 − q)k = 1,
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valid for any Ferrers board B, can also be derived from 5.13. If B is the “m-jump
board”, B = B(m, 1; m, 1; . . . ; m, 1), then 5.13 implies

Rn−k(B)(1 − q)n−k =
∑
j≥0

(−1)j+k

[
j

k

]
q(

k
2)+mj+(m−1)(j

2)
[
n

j

]
qm−1

,

where the last q-binomial coefficient is in the base qm−1. Using (28), this identity
can be shown to reduce to a special case of Fine’s bibasic version of the Heine
transformation [Fine, Eq. (21.81)].

6. Summary.

The subject of hypergeometric series has been the focus of a great deal of research
over the past 200 years. Many of these results, especially theorems on series of
Karlsson-Minton type, have application to the study of rook polynomials. As this
young branch of enumerative combinatorics matures, perhaps the combinatorial
perspective it provides will result in new developments in hypergeometric series.
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rec., reprinted in Werke 3, vol. II, 1876, pp. 123–162.

[Ges1] I. M. Gessel, Generalized rook polynomials and orthogonal polynomials, q-Series and
Partitions (Dennis Stanton, ed.), IMA Volumes in Mathematics and its Applications,
Springer Verlag, New York, 1989, pp. 159–176.

[Ges2] I. M. Gessel, private communication.
[GJW1] J. R. Goldman, J. T. Joichi, and D. E. White, Rook theory I: Rook equivalence of Ferrers

boards, Proc. Amer. Math. Soc. 52 (1975), 485–492.
[GJW2] J. R. Goldman, J. T. Joichi, and D. E. White, Rook theory IV: Orthogonal sequences of

rook polynomials, Studies in Applied Math. 56 (1977), 267–272.
[Hag1] J. Haglund, Compositions, Rook Placements, and Permutations of Vectors, Ph.D. Thesis,

University of Georgia, 1993.
[Hag2] J. Haglund, Compositions and rook placements, preprint (1994).
[JoRo] S. A. Joni and G.-C. Rota, A vector space analog of permutations with restricted position,

J. Combin. Theor (A) 29 (1980), 59–73.
[KaRi] I. Kaplansky and J. Riordan, The problem of the rooks and its applications, Duke Math.

J. 13 (1946), 259–268.
[Kar] P. W. Karlsson, Hypergeometric functions with integral parameter differences, J. Math.

Phys. 12 (1971), 270–271.
[Mac] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press,

Oxford, 1979.
[MacR] T. MacRobert, Functions of a Complex Variable, Fifth Edition, MacMillan & CO Ltd,

London, 1962.
[Min] B. M. Minton, Generalized hypergeometric functions of unit argument, J. Math. Phys.

11 (1970), 1375–1376.
[Rai1] E. D. Rainville, The contiguous function relations for pFq with applications to Bateman’s

Ju,v
n and Rice’s Hn(ζ, p, v), Bull. Amer. Math. Soc. 51 (1945), 714–723.

[Rai2] E. D. Rainville, Special Functions, MacMillan, New York, 1960.

[Rio] J. Riordan, An Introduction to Combinatorial Analysis, John Wiley, New York, NY,
1958.

[Sch] M.Schlosser, private communiaction.
[Sea1] D. B. Sears, On the transformation theory of hypergeometric functions and cognate

trigonometric series, Proc. London Math. Soc. (2) 53 (1951), 138–157.
[Sea2] D. B. Sears, Transformations of basic hypergeometric functions of any order, Proc. Lon-

don Math. Soc. (2) 53 (1951), 181–191.
[Shev] V. S. Shevelev, Some problems of the theory of enumerat ing the permutations with

restricted positions, J. Soviet Math. 61 (1992), 2272-2317.
[Sla] L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cam-

bridge, 1966.
[Sol] L. Solomon, The Bruhat decomposition, Tits system and Iwahori ring for the monoid of

matrices over a finite field, Geometriae Dedicata 36 (1990), 15–49.
[StS] R. Stanley and J. Stembridge, On immanants of Jacobi-Trudi matrices and permutations

with restricted position, J. Combin. Theory (A) 62 (1993), 261–279.
[Ste] E. Steingrimsson, A chromatic partition polynomial, Proceedings of the Seventh Interna-

tional Conference on Formal Power Series and Algebraic Combinatorics, Marne-La-Vall ée,
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