Three Faces of the Delta Conjecture

J. Haglund
University of Pennsylvania

March 30, 2019

The Algebraic Side

Let $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}, Y_{n}=\left\{y_{1}, \ldots, y_{n}\right\}$ be sets of variables. Let

$$
\mathrm{DR}_{n}=\mathbb{C}\left[X_{n}, Y_{n}\right] /\left\{\sum_{i} x_{i}^{a} y_{i}^{b}: a, b \geq 0, a+b>0\right\}
$$

be the ring of diagonal coinvariants. S_{n} acts "diagonally" on DR_{n} by permuting the X and Y variables in the same way.
Example: $n=2$

Cosets $\left\{1, x_{1}, y_{1}\right\}$ form a basis for DR_{2}, so $\operatorname{Hilb}\left(\mathrm{DR}_{2}\right)=1+q+t$.
The identity in S_{2} acts by fixing all the cosets, while $\sigma=(12)$ fixes 1 and sends $\left\{x_{1}, y_{1}\right\}$ to $\left\{x_{2}, y_{2}\right\}$. Since $x_{1}+x_{2}=0=y_{1}+y_{2}$, $x_{2}=-x_{1}, y_{2}=-y_{1}$. Hence the coset 1 corresponds to the trivial character, while x_{1}, y_{1} correspond to the sign character, and the bigraded character of DH_{2} is $s_{2}+(q+t) s_{1,1}$.

The Symmetric Function Side

Let Δ_{f}^{\prime} be a linear operator defined via

$$
\Delta_{f}^{\prime} \tilde{H}_{\mu}(X ; q, t)=f\left[B_{\mu}-1\right] \tilde{H}_{\mu}(X ; q, t)
$$

where $\quad B_{\mu}=\sum_{s \in \mu} q^{\text {coarm(s) }} t^{\text {coleg(s) }}$. For example
$B_{3,2}=1+q+q^{2}+t+t q$.
Haiman proved that the bigraded character of DR_{n} under the diagonal action is given by
$\Delta_{e_{n-1}}^{\prime} e_{n}(X)=\sum_{\mu \vdash n} \frac{T_{\mu} \tilde{H}_{\mu}(X ; q, t) M B_{\mu} \prod_{s \in \mu}^{\prime}\left(1-q^{\operatorname{coarm}(s)}\right)\left(1-t^{\text {coleg }(s)}\right)}{\prod_{s \in \mu}\left(t^{\operatorname{leg}(s)}-q^{\operatorname{arm}(s)+1}\right)\left(q^{\operatorname{arm}(s)}-t^{\operatorname{leg}(s)+1}\right)}$
where $M=(1-q)(1-t)$ and $T_{\mu}=t^{n(\mu)} q^{n\left(\mu^{\prime}\right)}$, with $n(\mu)=\sum_{i}(i-1) \mu_{i}$.

The Combinatorial Side

Given a Dyck path π and a word parking function P (a filling of the squares just to the right of North steps of π with cars, i.e. integers between 1 and n, strictly increasing up columns), let a_{i} be the number of area squares in the i th row (from the bottom). Cars in rows (i, j) with $i<j$ form an inversion pair if either $a_{i}=a_{j}$ and $c a r_{i}<c a r_{j}$, or $a_{i}=a_{j}+1$ and $c a r_{i}>c a r_{j}$. Let d_{i} be the number of inversion pairs (i, j) with $i<j$. Furthermore, we call a car at the bottom of a column a valley, and say the valley is moveable if, when we slide the car one square to the left, the result is still a word parking function, i.e we still have strict decrease down columns. For example, in Figure 1, cars 1, 2 and 8 (in rows 5, 6 and 8) are moveable, but cars 4 and 3 in rows 1 and 2 are not.

a_{i}	d_{i}
1	0
1	1
0	0
1	2
2	2
1	2
0	0
0	0

Figure: A word parking function with area $=6$. There are dinv (i, j)-row pairs $(7,8),(5,7),(5,8),(4,5),(4,7),(3,6),(3,8)$, so dinv $=7$. The total weight is $x_{1} x_{2} x_{3} x_{4}^{2} x_{7} x_{8}^{2} q^{7} t^{6}$.

Figure: The various word parking functions when $n=2$, together with their x, q, t weights.

Theorem (Carlsson-Mellit, 2015)

$$
\Delta_{e_{n-1}}^{\prime} e_{n}=\sum_{P \in \mathrm{WP}(n)} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} x^{P}
$$

where the sum is over all word parking functions P on n cars.
Still Open: Find a combinatorial expression for the Schur expansion of the right-hand-side above.

Corollary (Conjectured by H., Loehr in 2002)

$$
\operatorname{Hilb}\left(\mathrm{DR}_{n}\right)=\sum_{\sigma \in S_{n}} t^{\operatorname{maj}(\sigma)} \prod_{i=1}^{n-1}\left[w_{i}(\sigma)\right]_{q} .
$$

Let $w_{i}(\sigma)$ equal the number of w_{j} which are in σ_{i} 's run and larger than σ_{i}, or in the next run to the right and smaller than σ_{i}.

Example

$$
\begin{aligned}
\sigma=25713846 & \rightarrow 257|138| 46 \mid 0 \\
\left(w_{1}, w_{2}, \ldots, w_{8}\right) & =(3,3,2,2,1,2,2,1)
\end{aligned}
$$

Theorem (Carlsson-Oblomkov, 2018)

A monomial basis for DR_{n} is given by a certain family of cosets, one for each $\sigma \in S_{n}$. The contribution to $\mathrm{Hilb}\left(\mathrm{DR}_{n}\right)$ of monomials associated to σ is $t^{\operatorname{maj}(\sigma)} \prod_{i=1}^{n-1}\left[w_{i}(\sigma)\right]_{q}$.

Examples

$$
\begin{array}{r}
\sigma=25713846 \rightarrow y_{1} y_{2} y_{3} \times y_{1} y_{2} y_{3} y_{4} y_{5} y_{6} \\
\left(1+x_{2}+x_{2}^{2}\right)\left(1+x_{5}+x_{5}^{2}\right)\left(1+x_{7}\right)\left(1+x_{1}\right)\left(1+x_{8}\right)\left(1+x_{4}\right) \\
\text { Set all } x_{i}=0 ; \sum_{\sigma \in S_{n}} \prod_{k \in \text { Des }} y_{1} y_{2} \cdots y_{k} \rightarrow \text { Garsia-Stanton basis } \\
\text { Set all } y_{i}=0 ; \sigma=(12 \cdots n):\left(w_{1}, w_{2}, \ldots\right)=(n, n-1, \ldots) \rightarrow \\
\left(1+x_{1}+\ldots x_{1}^{n-1}\right) \cdots\left(1+x_{n-2}+x_{n-2}^{2}\right)\left(1+x_{n-1}\right) \rightarrow \text { Artin basis. }
\end{array}
$$

						8	
1							
						2	
0							
			6				
2							
		5					
2							
		4					
1							
7							
2							
3							
1							
1							
1							

The Delta Conjecture (H., Remmel, Wilson, 2015)

$$
\begin{aligned}
\Delta_{e_{k-1}}^{\prime} e_{n} & =\left.\sum_{P \in \mathrm{WP}(n)} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} \prod_{a_{i}>a_{i-1}}\left(1+z / t^{a_{i}}\right)\right|_{z^{n-k}} \\
& =\left.\sum_{P \in \mathrm{WP}(n)} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} \prod_{\text {movable valleys }}\left(1+z / q^{d_{i}+1}\right)\right|_{z^{n-k}}
\end{aligned}
$$

Let Π be an ordered set partition of $\{1,2, \ldots, n\}$, and let $\sigma=\sigma(\Pi)$ be the ordering of the blocks of Π which minimizes maj. For example, if $\Pi=\{\{2,3,5\},\{1,6,7,9\},\{4,8\}\}$, then $\sigma(\Pi)=235679148$, and $\operatorname{minimaj}(\Pi)=\operatorname{maj}(\sigma)=6$. Next form σ^{*} by marking every number which is not leftmost (in minimaj order) from its block;

$$
\sigma^{*}=23^{*} 5^{*} 67^{*} 9^{*} 1^{*} 48^{*}
$$

Now construct the vector $\left(w_{1}(\Pi), w_{2}(\Pi), \ldots\right)$ by first isolating the unmarked elements of σ^{*}, map them to a permutation, and apply previous rule:

$$
264 \rightarrow 132 \rightarrow 13|2| 0 \rightarrow(1,1,1)
$$

For marked elements σ_{i}^{*}, w_{i} equals the number of unmarked elements smaller than σ_{i} in its run plus the number of unmarked elements which are larger in the previous run.

$$
\sigma^{*}=\left\{23^{*} 5^{*}\right\}\left\{67^{*} 9^{*} 1^{*}\right\}\left\{48^{*}\right\} \rightarrow(1,1,1,1,2,2,2,1,1)
$$

Theorem H.-Sergel, 2018

$$
\begin{aligned}
\sum_{P \in \operatorname{PF}(n)} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} & \left.\prod_{\text {movable valleys }}\left(1+z / q^{d_{i}+1}\right)\right|_{z^{n-k}}= \\
& \sum_{\substack{n \\
k \text { blocks }}} t^{\text {minimaj(}(\square)} \prod_{i=1}^{n}\left[w_{i}(\Pi)\right]_{q}
\end{aligned}
$$

Open Question: Is there an analogue involving the rise version of the Delta Conjecture?

A module for the Delta Conjecture

M. Zabrocki has recently introduced a module whose bigraded character is conjecturally equal to the combinatorial and symmetric function sides of the Delta Conjecture. Let $\Theta_{n}=\left\{\theta_{1}, \ldots, \theta_{n}\right\}$ be a set of anticommuting variables, i.e. $\theta_{i} \theta_{j}=-\theta_{j} \theta_{i}, 1 \leq i \leq j \leq n$. Note this implies $\theta_{i}^{2}=0$. Let X_{n}, Y_{n} be two sets of commuting variables, which also commute with the θ_{i}. Set

$$
\mathrm{TR}_{n}=\mathbb{C}\left[X_{n}, Y_{n}, \Theta_{n}\right] /\left\{\sum_{i} x_{i}^{a} y_{i}^{b} \theta_{i}^{c}: a, b, c \geq 0, a+b+c>0, c \leq 1\right\}
$$

S_{n} acts on TR_{n} diagonally by permuting the x_{i}, y_{i}, θ_{i} in the same way. Then Zabrocki conjectures that the tri-graded character of this action is given by

$$
\sum_{k=1}^{n} z^{n-k} \Delta_{e_{k-1}}^{\prime} e_{n}
$$

where q, t give the grading in the x and y variables and z the grading in the θ variables.

