Three Faces of the Delta Conjecture

J. Haglund University of Pennsylvania

March 30, 2019

J. Haglund University of Pennsylvania Three Faces of the Delta Conjecture

- 4 回 > - 4 回 > - 4 回 >

The Algebraic Side

Let
$$X_n = \{x_1, \dots, x_n\}, Y_n = \{y_1, \dots, y_n\}$$
 be sets of variables. Let

$$\mathsf{DR}_n = \mathbb{C}[X_n, Y_n] / \{\sum_i x_i^a y_i^b : a, b \ge 0, a + b > 0\}$$

be the ring of diagonal coinvariants. S_n acts "diagonally" on DR_n by permuting the X and Y variables in the same way.

Example: n = 2

Cosets $\{1, x_1, y_1\}$ form a basis for DR₂, so Hilb(DR₂) = 1 + q + t.

The identity in S_2 acts by fixing all the cosets, while $\sigma = (12)$ fixes 1 and sends $\{x_1, y_1\}$ to $\{x_2, y_2\}$. Since $x_1 + x_2 = 0 = y_1 + y_2$, $x_2 = -x_1, y_2 = -y_1$. Hence the coset 1 corresponds to the trivial character, while x_1, y_1 correspond to the sign character, and the bigraded character of DH₂ is $s_2 + (q + t)s_{1,1}$.

The Symmetric Function Side

Let Δ'_f be a linear operator defined via

$$\Delta_f^\prime ilde{H}_\mu(X;q,t) = f[B_\mu-1] ilde{H}_\mu(X;q,t),$$

where $B_{\mu} = \sum_{s \in \mu} q^{\operatorname{coarm}(s)} t^{\operatorname{coleg}(s)}$. For example $B_{3,2} = 1 + q + q^2 + t + tq$. Haiman proved that the bigraded character of DR_n under the diagonal action is given by

$$\Delta_{e_{n-1}}'e_n(X) = \sum_{\mu \vdash n} \frac{T_{\mu} \tilde{H}_{\mu}(X;q,t) M B_{\mu} \prod_{s \in \mu}' (1 - q^{\operatorname{coarm}(s)})(1 - t^{\operatorname{coleg}(s)})}{\prod_{s \in \mu} (t^{\operatorname{leg}(s)} - q^{\operatorname{arm}(s)+1})(q^{\operatorname{arm}(s)} - t^{\operatorname{leg}(s)+1})}$$

< ロ > < 同 > < 回 > < 回 > < □ > <

where
$$M = (1 - q)(1 - t)$$
 and $T_{\mu} = t^{n(\mu)}q^{n(\mu')}$, with $n(\mu) = \sum_{i} (i - 1)\mu_{i}$.

The Combinatorial Side

Given a Dyck path π and a word parking function P (a filling of the squares just to the right of North steps of π with cars , i.e. integers between 1 and n, strictly increasing up columns), let a_i be the number of area squares in the *i*th row (from the bottom). Cars in rows (i, j) with i < j form an inversion pair if either $a_i = a_j$ and $car_i < car_i$, or $a_i = a_i + 1$ and $car_i > car_i$. Let d_i be the number of inversion pairs (i, j) with i < j. Furthermore, we call a car at the bottom of a column a *valley*, and say the valley is *moveable* if, when we slide the car one square to the left, the result is still a word parking function, i.e we still have strict decrease down columns. For example, in Figure 1, cars 1, 2 and 8 (in rows 5, 6 and 8) are moveable, but cars 4 and 3 in rows 1 and 2 are not.

< ロ > < 同 > < 回 > < 回 > < □ > <

Figure: A word parking function with area = 6. There are dinv (i, j)-row pairs (7, 8), (5, 7), (5, 8), (4, 5), (4, 7), (3, 6), (3, 8), so dinv = 7. The total weight is $x_1x_2x_3x_4^2x_7x_8^2q^7t^6$.

Figure: The various word parking functions when n = 2, together with their x, q, t weights.

< ロ > < 同 > < 回 > < 回 > < □ > <

æ

Theorem (Carlsson-Mellit, 2015)

$$\Delta'_{e_{n-1}}e_n=\sum_{P\in \mathrm{WP}(n)}q^{\mathrm{dinv}(P)}t^{\mathrm{area}(P)}x^P.$$

where the sum is over all word parking functions P on n cars.

Still Open: Find a combinatorial expression for the Schur expansion of the right-hand-side above.

Corollary (Conjectured by H., Loehr in 2002)

$$\mathsf{Hilb}(\mathsf{DR}_n) = \sum_{\sigma \in S_n} t^{\mathsf{maj}(\sigma)} \prod_{i=1}^{n-1} [w_i(\sigma)]_q.$$

- 4 同 6 4 日 6 4 日 6

Let $w_i(\sigma)$ equal the number of w_j which are in σ_i 's run and larger than σ_i , or in the next run to the right and smaller than σ_i .

Example

$$\sigma = 25713846 \rightarrow 257|138|46|0$$
$$(w_1, w_2, \dots, w_8) = (3, 3, 2, 2, 1, 2, 2, 1).$$

イロン 不同 とくほう イロン

э

Theorem (Carlsson-Oblomkov, 2018)

A monomial basis for DR_n is given by a certain family of cosets, one for each $\sigma \in S_n$. The contribution to $Hilb(DR_n)$ of monomials associated to σ is $t^{maj(\sigma)} \prod_{i=1}^{n-1} [w_i(\sigma)]_q$.

Examples

 $\begin{aligned} \sigma &= 25713846 \rightarrow y_1 y_2 y_3 \times y_1 y_2 y_3 y_4 y_5 y_6 \\ (1 + x_2 + x_2^2)(1 + x_5 + x_5^2)(1 + x_7)(1 + x_1)(1 + x_8)(1 + x_4) \\ \text{Set all } x_i &= 0; \sum_{\sigma \in S_n} \prod_{k \in \text{Des}} y_1 y_2 \cdots y_k \rightarrow \text{Garsia-Stanton basis} \\ \text{Set all } y_i &= 0; \sigma &= (12 \cdots n) : (w_1, w_2, \ldots) = (n, n - 1, \ldots) \rightarrow \\ (1 + x_1 + \ldots x_1^{n-1}) \cdots (1 + x_{n-2} + x_{n-2}^2)(1 + x_{n-1}) \rightarrow \text{Artin basis.} \end{aligned}$

The Delta Conjecture (H., Remmel, Wilson, 2015)

$$\begin{split} \Delta_{e_{k-1}}' e_n &= \sum_{P \in \mathsf{WP}(n)} q^{\mathsf{dinv}(P)} t^{\mathsf{area}(P)} \prod_{a_i > a_{i-1}} (1 + z/t^{a_i}) \big|_{z^{n-k}} \\ &= \sum_{P \in \mathsf{WP}(n)} q^{\mathsf{dinv}(P)} t^{\mathsf{area}(P)} \prod_{\mathsf{movable valleys}} (1 + z/q^{d_i+1}) \big|_{z^{n-k}} \end{split}$$

ヘロト ヘヨト ヘヨト ヘヨト

æ

J. Haglund University of Pennsylvania Three Faces of the Delta Conjecture

Let Π be an ordered set partition of $\{1, 2, \ldots, n\}$, and let $\sigma = \sigma(\Pi)$ be the ordering of the blocks of Π which minimizes maj. For example, if $\Pi = \{\{2, 3, 5\}, \{1, 6, 7, 9\}, \{4, 8\}\}$, then $\sigma(\Pi) = 235679148$, and minimaj $(\Pi) = maj(\sigma) = 6$. Next form σ^* by marking every number which is not leftmost (in minimaj order) from its block;

$$\sigma^* = 23^* 5^* 67^* 9^* 1^* 48^*.$$

Now construct the vector $(w_1(\Pi), w_2(\Pi), ...)$ by first isolating the unmarked elements of σ^* , map them to a permutation, and apply previous rule:

$$264
ightarrow 132
ightarrow 13|2|0
ightarrow (1,1,1).$$

For marked elements σ_i^* , w_i equals the number of unmarked elements smaller than σ_i in its run plus the number of unmarked elements which are larger in the previous run.

$$\sigma^* = \{23^*5^*\}\{67^*9^*1^*\}\{48^*\} \rightarrow (1, 1, 1, 1, 2, 2, 2, 1, 1).$$

Theorem H.-Sergel, 2018

.

Open Question: Is there an analogue involving the rise version of the Delta Conjecture?

A module for the Delta Conjecture

M. Zabrocki has recently introduced a module whose bigraded character is conjecturally equal to the combinatorial and symmetric function sides of the Delta Conjecture. Let $\Theta_n = \{\theta_1, \ldots, \theta_n\}$ be a set of anticommuting variables, i.e. $\theta_i \theta_j = -\theta_j \theta_i, 1 \le i \le j \le n$. Note this implies $\theta_i^2 = 0$. Let X_n, Y_n be two sets of commuting variables, which also commute with the θ_i . Set

$$\mathsf{TR}_n = \mathbb{C}[X_n, Y_n, \Theta_n] / \{\sum_i x_i^a y_i^b \theta_i^c : a, b, c \ge 0, a+b+c > 0, c \le 1\}.$$

 S_n acts on TR_n diagonally by permuting the x_i, y_i, θ_i in the same way. Then Zabrocki conjectures that the tri-graded character of this action is given by

$$\sum_{k=1}^n z^{n-k} \Delta'_{e_{k-1}} e_n,$$

where q, t give the grading in the x and y variables and z the grading in the θ variables.