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Abstract

A New Interpretation of the Cocharge Statistic

Kendra Ann Nelsen

Advisor: James Haglund

In this thesis we will start by introducing the combinatorial formula for the
Macdonald polynomial. We then show how cocharge arises naturally from this
formula. Expanding these methods to compositions, we see how an alterna-
tive description of cocharge arises naturally from the combinatorial statistics
used in the formula for the Macdonald polynomial. The final chapter of the
thesis outlines the proof of Lascoux and Schiitzenberger’s famous theorem that

expands the Kostka-Foulkes polynomial in terms of charge.

v



1 Preliminaries

1.1 Tableaux

A partition p = (pq, ..., ux) of n is a tuple of weakly decreasing, nonzero parts such
that g1 4+ -+ + e = n. The length of the partition (i) = k is equal to the number
of parts of u, and the size of the partition |u| = n is the sum of the parts. Identify
a partition g with the tableau that has p; boxes in the i'® row. For the partition

= (5,4,2) we identify p with the following tableau

| (1.1)

Equivalently, the diagram of p is dg(pu) = {(i,7) € Zy X Zy|i <= l(p),j <= u;}.
Abusing notation, we refer to dg(p) as u. We partially order partitions p and v of n
by saying p < v if gy + -+ pp < vy + - -y, for all k.

Let p/ = (4, ..., i) where pj is equal to the number of boxes in the i"* column
of . In the above example, when p = (5,4,2) we have ' = (3,3,2,2,1). A filling of
a partition p is a map o : up — Z, that assigns a positive integer to each of the boxes
in the partition p. A super filling of a partition u is a map o : p — Z, |JZ_ that
assigns a non-zero integer to each of the boxes in the partition u. Denote negative
numbers with a bar overtop, i.e. negative 4 is written 4. For example, a filling and a

super filling of the partition u = (5,4, 2) are:



1|4 216
341 3[2]4]1
113]2]3]6]| [1[2]2[5]3]

The reading word of a tableau is found by reading the entries of the tableau
left to right, top to bottom. Denoted w(c), the reading word of the above filling
is 14234113236. If w = (1,5) is the box in the first row, fifth column of the above
partition y, then u(u) = 6 is the filling of the box u. Define the weight of a filling as
a tuple A where )\; is the number of ¢’s that appear in the filling. Denote the weight
as wt(p) = (A, -+, Ag) so that in the above filling, we have wt(u) = (3,2,3,2,0,1).
Similarly, define the weight of a super filling as a pair of tuples (A, p) where J; is the
number of i’s and p; is the number of i’s appearing in the super filling. The above
super filling has weight wt(o) = (A, p) where A = (1,1,2,1,1) and p = (1,3,0,0,0,1).

We can standardize filling o(p) of weight A = (A1, -+, A¢) in the following way:

1. In reading order (from left to right, top to bottom) replace the first entry
containing a 1 with a 1, the second entry containing a 1 with a 2, ---, the A/

entry containing a 1 with a A;.

2. In reading order replace the first entry containing a 2 with a A\; + 1, the second
entry containing a 2 with a A\; + 2, ---, the A\{® entry containing a 2 with a

A1+ Aa.



3. Repeat the same process for entries containing 3 through A

Standardization produces a new filling &(u) with weight wt(5) = 1/ (i.e. a filling

with entries consisting of one 1, one 2, ..., one |u|). Below we illustrate standardizing
a filling:

o(u) a(u)

1]4 119

2(3]14]|1 6 |10 2

113]2]3]6]| [3[7]5[8]11]

A super filling (i) can be standardized using a similar algorithm. First, one must
fix a complete order on the super alphabet Z, |JZ_. Two orderings that we will use
later are:

(@) 1<1<2<2<3<3---,

(b)) 1<2<3<...<3<2<1.

For the purposes of explaining how to standardize a super filling, we will use ordering
(a). Let o(u) be a super filling with wt(o) = (A, p).

1. In reading order (from left to right, top to bottom) replace the first entry

containing a 1 with a 1, the second entry containing a 1 with a 2, ---, the A/

entry containing a 1 with a A;.



2. In backwards reading order (from right to left, bottom to top) replace the first
entry containing a 1 with a A\; + 1, the second entry containing a 1 with a \; +2,

-+, the p!" entry containing a T with a A\; + p;.
3. Repeat the same process for entries containing 2,2, 3,3, ....

Below we illustrate standardizing a super filling:

o(p) a(n)
216 311
32[4]1 716]9]2
1{2[2[5[3] [1]5[4f10[8]

To standardize using an alternate ordering, go from the smallest letter in the ordering
to the largest letter in the ordering replacing positive letters in reading order and
negative letters in backwards reading order.

Let = (p1,..., ) and A = (A1, -+, \g) be partitions. A semi-standard tableau
of shape p and weight A is a filling of the boxes of p with Ay 1’s, ---, A, m’s such

that:
1. the values in the columns decrease strictly from top to bottom,
2. the values in the rows increase weakly from left to right.

Let = (5,4,2) and A = (3,2,3,2,0,1). A possible semi-standard tableau T" of shape

i (denoted shp(T) = p) is:



We will use the following notation:

SSYT(XN) = {semi-standard tableau T with shp(T') = A and weight not specified},

SSYT(A, u) = {semi-standard tableau T with shp(T") = X and wt(T) = u}.

1.2 Statistics on Tableaux

The goal of this section is to define two combinatorial statistics, inv(c) and maj(o)
of a filling o, that are used in Haglund’s combinatorial formula for the Macdonald
Polynomial [4].

A descent of a filling o is a pair of entries (pu(u), pu(v)), with p(u) > p(v), where

u is the box directly above v in the Ferris diagram of u. Define

Des(o) = {u € p| (pu(u), p(v)) is a descent pair }.

For example, with respect to the ordering 1 < 1 < 2 < 2 < ---, the filling below
has three descents which correspond to the boxes denoted with a subscript d on the

entry:



1]3[2]3]6]

Equivalently, Des(o) = {(2,1),(2,3),(3,2)}. Observe that for all semi-standard
tableau, entries not in the first row are descents by definition. We can expand the
definition of the descent set to include super fillings. First, fix a complete ordering on
Z,\JZ_, and let u be the box directly above v in u. A descent of a super filling o is
a pair of entries (u(u), u(v)), with p(u) > p(v), or u(u) = u(v) € Z_. For example,
the super filling below has four descents which correspond to the boxes denoted with

a subscript d on the entry:

64
3a|24]44
212

(28 1=

3

Equivalently, Des(o) = {(1,2),(2,2),(2,3),(3,2)}. It is important to observe that if
o is a filling or super filling, and & is its standardization, Des(o) = Des(7).

The leg (arm) of a box u € u is the number of boxes strictly above (to the right
of) u and in the same column (row) as w. If uw = (1,2) in the partition p = (5,4, 2)

below, then leg(u) = 2 and arm(u) = 3 as denoted in the following diagram:



[

uaaa|‘

Two boxes u,v € p are said to attack one another if either of the following hold

true:

1. boxes u and v are in the same row, i.e. u = (7,j) and v = (i, k), or

2. box u is in the row directly above v and in any column strictly to the right of

v, i.e. u=(i,k) and v = (¢ — 1,7) where j < k.

Given a filling o, a pair of attacking boxes u,v € u where o(u) > o(v) form an
inversion pair if o(u) proceeds o(v) in reading order. Two different inversion pairs
are illustrated on the figures below, with boxes u and v denoted with subscripts on

their corresponding entries:

114 1|4,
2,]1314(1, 2,1314]1
113]2]3]6] 1[3]2[3]6]

Denote the set of all inversion pairs of a filling as Inv(o). Equivalently,

Inv(o) = {(u,v)|o(u) > o(v) is an inversion pair }.



In the above filling, there eight inversions giving |Inv(o)| = 8. We can extend the
definition of inversions to a super filling 0. Given a super filling o, a pair of attacking
boxes u,v € p where o(u) > o(v) or o(u) = o(v) € Z_ form an inversion pair if o(u)
proceeds o(v) in reading order. Using the ordering 1 <1 <2 <2 < ---, two different
inversion pairs are illustrated on the figures below, with boxes u and v denoted with

subscripts on their corresponding entries:

2[5 2[5
2(4]1 31241,
12.2.05]3] Ll2[2]5]3]

Again, it is important to observe that if ¢ is a filling or super filling, and & is its

standardization, Inv(o) = Inv(a).

Definition 1.1. The generalized major index statistic of a filling (or super filling) o
is:

maj(o) = Z 1+ leg(u). (1.2)

u€Des(o)

Definition 1.2. The inversion statistic of a filling (or super filling) o is:

inv(o) = |Inv(o)| — Z arm(u). (1.3)

u€Des(o)

From our previous observations, it is clear that if ¢ is a filling or super filling, and
o is its standardization, maj(o) = maj(5) and inv(o) = inv(a).
As originally remarked in [2], inv(o) is always non-negative. The statement can

be proven by counting counter-clockwise triples. A triple is a set of three boxes



u,v,w € p such that u = (i + 1,5), v = (4,4), and w = (i + 1, k) where k > j.

Equivalently, the boxes have the below configuration in a partition pu:

Let z, y, and z be the fillings of the boxes u, v, and w respectively after standardizing
the triple (then z,y,z € {1,2,3}). Then u,v,w € p form a counter-clockwise triple
if one of the following is true: z <y < 2z, y < z < x, or z < x < y. Pictorially, u, v, w
form a counter-clockwise triple if while reading the values from smallest to largest,

we move in a counterclockwise arc:

ot

(1.4)

For example, x = 1, y = 2, and z = 3 form a counter-clockwise triple, where
r =1y =3, and z = 2 do not. Triples are defined when u and w are boxes in
the first row by placing a box v directly below u and filling v with oo. As before,
standardize and consider the relationship between the entries z, y, and z to determine
if the triple is counter-clockwise.

Observe that each attacking pair of boxes in 1 belong to a unique triple. Fix
u € p. For each triple (u, v, w) in which u occupies the box in the top left corner, let

(x,y, z) be the standardized entries of the boxes. Suppose u € Des(o) (i.e. © > y),
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then it follows that x > z and/or z > y. By investigation, we see that (u,v,w) forms
a counter-clockwise triple if and only if both x > 2z and z > y are true. Further,
if both z > z and z > y true, then both pairs (u,w) and (w,v) are inversions,
thus contributing two to |Inv(o)|. Since there are exactly arm(u) triples in which
u occupies the box in the top left corner, this particular counter-clockwise triple
contributes (2 — 1) = 1 to the calculation of inv(o). Now suppose exactly one of
x > z and z > y is true, giving a clockwise triple. Exactly one of the pairs (u, w) and
(w,v) is an inversion, thus contributing one to |Inv(o)|. Again, since there are exactly
arm(u) triples in which u occupies the box in the top left corner, this clockwise triple
contributes (1 — 1) = 0 to the calculation of inv(o).

Now suppose u ¢ Des(o) (i.e. < y), then it follows that z < z and/or z < y.
By investigation, we see that (u,v,w) forms a counter-clockwise triple if and only if
exactly one of x > z or z > y is true. Further, if exactly one is true, then exactly one
of the pairs (u,w) and (w, v) is an inversion, thus contributing one to |Inv(o)|. Since
u ¢ Des(o), this counter-clockwise triple contributes (1 —0) = 1 to the calculation of
inv(o). Now suppose both z < z and z < y are true, giving a clockwise triple. Neither
of the pairs (u, w) and (w,v) are inversions, thus contribute zero to |Inv(o)|. Again,
since u ¢ Des(o), this clockwise triple contributes (0 — 0) = 0 to the calculation

of inv(o). It is not difficult to see that standardizing the triples does not effect the
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calculations. It is now proven that

inv(o) = [Inv(o)| — Z arm(u) = Z 1, (1.5)

u€Des(o) cctep

where the last sum is over counter-clockwise triples in p. Therefore inv(o) > 0 for

all o.

1.3 Plethystic Notation

Macdonald polynomials are expressed in plethystic notation and the proof that
Haglund’s formula is a combinatorial version of the Macdonald polynomial requires
the use of plethystic notation. In this subsection, we will introduce this notation and
give simple examples to clarify. This section is summarized from [3].

Recall, for non-negative k the symmetric function

pk(mlax%"') = Dk :Z$f (16)

i>1
and for any non-negative tuple A the power-sums
70N
p)\(xlrrzv"') = Dx :Hpkm (17)
i=1

where £(\) is the length of the partition. For example, ps; = (3. 23) (> ;). It is
well-known that the power-sums p, form a basis for the ring of symmetric functions

denoted A [7].

Definition 1.3. Let F(xy, 29,23, --) be a formal power series of rational functions,

and X = (z1,x9,x3,...) be a set of variables. Define the plethystic substitution of F
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mnto P as

pi[F] :F(xlf,xg,xlg,...), (1.8)

and the plethystic substitution of X into py as

pr[X] = pe(X) = pr(21, 22, 73, . . ) (1.9)

For example, if F(x1, 9, 23,--+) = 3,5 i, then py[F] = 37 o = pa[X]. In
other words, we treat X = (z1,%9,73,...) as X = x; + 3 + 23 + ---. Note the

following:

L If —=F =" —u;, then pi[—F] = —F[a}, 25,25, ..] = —aF = —pi[F]. More

generally, px[—F| = —pi[F] for all F.

2. Let Y = (—zy, —xa, —x3,...). Then pi[Y] = (=1)*zh+(=1)kab+(=1)Fzk+- -

For clarity, define py[eX] = (=1)*a% + (=1)*zk + (=1)*zk + - -

3. Let r € R. Then pp[rX] = pp(ray, rag, ras,...) = (ray)f+(rag) +(ras)f+- - =

rope[ X].

4. Let Y = (y1,Y2,Y3,-..). Then pg[X — Y] = > af — yF = py[X] — pi[Y], since

X—Y:x1+x2—|—x3+---—yl—yg—yg—--«.

5. Let ¢ be a variable. Then pp[X(1 — t)] = pp[X — tX] = >, af — 2fth =

>l —1F).
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In the natural way, extend plethystic substitution to p, for any non-negative tuple

A as
£(N) ()
palF] = [ [ oalF) = [ Flat 257, 23, ).
=1 =1

For example,

PsalX (1= )] = pal X (1 = Olpa X (1= 0] = (32?1 =) (S w1 — 1)),

Definition 1.4. Let F(xy,zo,x3, ) be a formal power series of rational functions.
For a general symmetric function f with expansion f = ), capy for ¢\ € R, define
the plethystic substitution of F' into f as

o)
FIF] =" capalF] ZZCAHPAZ-[F] (1.10)

A A
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2 Macdonald Polynomials and Haglund’s Combi-
natorial Formula

Definition 2.1. The Macdonald polynomaials I:I“[Z; q,t] are the basis of the ring of

symmetric functions defined and characterized by the following axioms:

[:[/J[X(q_ 1)7q7t] = Zcpu(q7t>mp; (21)
p<u!

H,[X(t=1);q,1] = dyulg, t)m,, (2.2)
p<p

< H,, sy >=1, (2.3)

for suitable coefficients ¢, d,, € Q(q,t) [4].

2.1 Haglund’s Combinatorial Formula

Definition 2.2. Let p be a partition. Define Haglund’s combinatorial formula as

.Z‘ 2q.t Z qzm) tmaj(cr o (24)

o:pu—ZLy

where 27 = [[, To(u)

We will now mention a few results and definitions that will be needed to prove

the equivalence of Macdonald polynomials to Haglund’s combinatorial formula.

Theorem 2.3. The polynomial C,,(x;q,t) is symmetric in the variables x.
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Two proofs of this result can be found in [4].

Recall, the power-sums p,(x), the monomial symmetric functions my(x), the ele-
mentary symmetric functions ey (z), the complete homogeneous symmetric functions
hy(z), and the Schur functions s, (z) are all bases for the ring of symmetric functions

/\. Let w be the involutory automorphism of /\ such that
wlea(z)) = ha(z);  wlha(z)) = ex(z);
wipa(x)) = (=D Vpy(@);  w(sa(x)) = sx (@),
Definition 2.4. The superization of a general symmetric function f(z) is f (x,y) =

wy f[X + Y], where wy acts on f[X + Y] as a symmetric function in the y variables

only.

More explicitly, let f be a symmetric function with expansion f[X] = >, caxpa[X]

for some constants ¢y. Then define

FIX+Y] =D aplX +Y] =) apX] + palY]),
A )
giving
Wy fIX+Y] =wy > expalX]+pY]) =D ex(palX] +wpa[Y]).
A A

Hence, f(z,y) = Sy apaX] + (=)A= Npy [Y]).

Proposition 2.5. Superization of Haglund’s combinatorial formula gives

Culw,yiq,t) = > ™m0z, (2.5)

opu—ZyUZ_
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where z; = x; for i positive, z; = y; for i negative.

The proof of this proposition can be found in [4].

2.2 The Equivalence

Theorem 2.6. Haglund’s combinatorial formula is equal to the Macdonald polyno-

mial,

H,(x:q,t) =Cu(z;q,1).

Our exposition of Theorem 2.6 closely follows that of Haglund, Haiman, and Loehr
n [4]. We will break the proof down into three steps, each step showing that that C,,
satisfies one of the three axioms of the Macdonald polynomials, i.e. (2.1), (2.2) , and

(2.3).
Proof that C,(z;q,t) satisfies axiom (2.2)

By definition of superization, we have that f(z,y) = wy f[X + Y], which gives

fla,—y) = wy fIX + e¥] =D exlpalX] + wpa[eY])
A

=Y amX]+ (DN (=) p[Y])
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Applying this to C,, we have C’u(qx, —x;q,t) = C,[X(¢—1);¢,t]. Recalling Proposi-

tion 2.5
CulX(g—1);q,t] = Z g gmailo) o
o:p—2ZyUZ_
where z; = qx; for i positive, z; = —x; for i negative. After simplification,

OM [X(q — 1)’ q, t] = Z (_1)m(0)qp(0)+inv(a)tmaj(o)x|a|’

o:u—ZyUZ_
T|o(w), and p(o) (m(c)) is the number of positive (negative) entries

where z°l = [Tie,
in the filling 0. Note that C),(z;¢,t) is defined with respect to any total ordering of

Z., UZ_. For this proof, it is convenient to use the ordering 1 <1 <2< 2,....
T

Following [4] we want to construct an involution Y on fillings o
Since m, =

Z, U Z_ which cancels out all terms involving x” where p > u'.

P12 this will then prove that C.[X(¢g—1);q,t] = Zpgu’ coulq, t)my,,

Z(l’h---ﬂ’e@)) Liy te(p)
for suitable coefficients. To construct T, first let @, v be an attacking pair such that:

|o(0)| where « is the smallest integer in o (i) that occurs in such

1. x =|o(a)] =
an attacking pair, and

2. In reading order, let © be the last box in such an attacking pair, and @ be the

last box attacking 0.

Note that at most one such attacking pair exists. Define

o, if # an attacking pair (4, ) as described above,
T(o) =
o else, where (1) = o(u), o(w) = o(w) ¥V w # .
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In other words, T fixes the entry in each box, unless there exists a pair (4,0) € o
as described above, in which case YT switches the sign of the entry in 4. Since (a,0)
only depends on |o|, it is easy to see that YY(c) = o and z!°l = 2/ for all 0.
Suppose Y(o) # o, then we claim (—1)™?) = —(=1)™Y) but p(c) + inv(c) =
p(To) + inv(Yo), and maj(o) = maj(Yo). Formally,
CulX(g =i f] = Y (~1)Ogporsimio)esto g (2.
Y(o)=0
To prove equation (2.6), assume Y(o) # o. Note that T switches the sign of the
entry in @ but fixes all other entries, which gives (—1)™) = —(—1)™(Y?)  Because
Y(o) # o, there is a unique attacking pair (u,v) such that |o(@)| = |o(0)] (as in the
definition of T). Since one of (@) and Yo (@) is positive, without loss of generality,
we can assume that o(a) is positive (i.e. p(Yo) = p(o) — 1). Let o(a) = x, which
gives Yo (u) = 7.
A key ingredient in showing T fixes maj(o) and p(o) + inv(o) is that Des(o) =
Des(Y(0)). To show Des(c) = Des(Y (o)) it is enough to consider the entries above
and below u. Assume u € p so that there exists boxes w, and w;, above and below

respectively. Let o(w,) = Yo(w,) = a and o(w,) = Yo (w,) = b:
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From the definition of (@, 0), it follows that v precedes wy, in reading order and (v, wy)
is an attacking pair. Since v is the last box in reading order in an attacking pair
with both entries equal to z, then |[b] # z. Using 1 < 1 < 2 < 2,..., we get
b<x<b<T ie u€ Des(o)if and only if Ya € Des(To). Now consider the box
w, above @ containing a. If a < z, then a < 7, thus w, ¢ Des(o)|J Des(Yo). Else
if @ > x, then a > T, thus, since T is negative, w, € Des(o) () Des(Yo). Therefore
Des(c) = Des(Y(o)). Simply by the definition of the generalized major index, this
implies maj(o) = maj(Yo).

As previously noted, p(To) = p(o)—1. Therefore to prove p(c)+inv(c) = p(To)+
inv(Yo), it is sufficient to show inv(Yo) = inv(o) + 1. From Des(o) = Des(Y (o)),
we have Y2 pego) arm(u) = 3 e pesiro) @rm(u). Thus, if [Inv(To)| = |[Inv(o)| + 1,
then inv(Yo) = inv(o) + 1. The only inversion pairs in Inv(Yo) that could possibly
differ from inversion pairs in /nv(o) must include 4. Let w € p attack @ and precede
@ in reading order. If o(w) < z, then o(w) < T, thus (w,a) ¢ Inv(o)JInv(Yo).
Else if o(w) > x, then o(w) > T, thus since 7 is negative, (w, @) € Inv(o) () Inv(Yo).
On the other hand, let w # v attack @ and follow u in reading order. Using a similar
argument, it is clear that |o(w)| must equal x to give an inversion to one of o or
To, but not the other. Further by the definition of ©, w must precede v in reading

order. Hence, w lies between 4 and ¥ in reading order which is a contradiction

to the definition of (u,v). Therefore if w follows @ in reading order then (w,u) ¢
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Inv(o)JInv(Yo). Finally consider (@, 0). Since @ precedes ¢ in reading order and
o(u) =z >0, (4,0) ¢ Inv(c). On the other hand, since Yo(i) =T < 0, (4,0) €
Inv(Yo). Hence [Inv(Yo)| = |[Inv(o)| + 1 and so p(o) + inv(o) = p(Yo) + inv(Yo)
as desired.

It is now proved that: (—1)™) = —(=1)"Y9) but p(c) + inv(c) = p(To) +

inv(Yo), and maj(o) = maj(Yo), which implies

CX(a =10t = 3 (RO (o)
YT(o)="

With the above statement proved, we near the end of the proof that C,(x;q,1t)
satisfies axiom (2.1). Let p be a partition and o : p — Z, |JZ_ be such that To = o
and wt(|o|) = p which gives zl°l = 2. By the definition of weight, py + - + p; is
the total number of entries in ¢ with absolute value at most j. Since Yo = o, for all
attacking pairs u,v € o we have that |o(u)| # |o(v)|. Hence in every row of u there
is at most one entry filled with x or T for all € Z,. This implies that p; +--- 4 p;
cannot exceed ), min(u;, j) = p} + -+ + . Therefore p < p/, which completes the

proof that C,(x; ¢, t) satisfies the first axiom (2.1) for the Macdonald polynomials.
0

We outline the proof below that C,,(z;q,t) satisfies the second axiom, but leave

the details to be found in [4].

Proof that C,(z;q,t) satisfies axiom (2.2)
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Applying f(z, —y) = wy f[X — Y] and Proposition 2.5 to the second axiom (2.2), and
simplifying gives:

O [X(t—1);q,t] = Z (—1)m(@) ginv(o)gp(o)+mai(o) ylo]

oip—Z UZ

where zl°l = [Luc, Tiow): plo), and m(o) are defined as before. For this proof, it
is convenient to use the ordering 1 < 2 < 3 < --- < 3 < 2 < 1. We construct an
involution €2 on fillings o : ©u — Z; U Z_ which cancels out all terms involving x”
where p > p, which will complete the proof of axiom (2.2).

To construct €2, first define @ to be a box in u such that:

1. x = |o(u)| be the smallest integer in o(u) that occurs such that z < i where
i=(1,5) € p,
2. Let @ be the first cell in reading order that satisfies the above condition.

Note that at most one such box @ exists. Define

o, if B a box @ as described above,
Qo) =

(w) =0o(w) ¥V w # .

Q>

o else, where 6(a) = o(a),
In other words, €2 fixes the entry in each box, unless there exists a box @ € o as
described above, in which case then ) switches the sign of the entry in @. Since @
only depends on |o|, it is easy to see that QQ(c) = o and z!°l = 2! for all 0.

Suppose, (o) # o, then we claim (—1)™) = —(=1)") but inv(o) = inv(Qo),
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and p(o) +maj(o) = p(Qo) + maj(Qo). More formally,

ClX(a—1q, = 3 (—1yndgnielperimaie) el 23)
Q(o)=0

The bulk of the remaining part of the proof centers on proving the above equation.
The proof can be read in [4].

Assuming equation (2.8) has been proven, observe that if Q(c) = o, then all
entries x with || < j occur in rows 1 through j. If p is a partition and z!°! = 27, then
p1+ -+ p; <+ ...+ py for all j, which means p < p. This now completes the

proof that C,,(x; ¢,t) satisfies the second axiom (2.2) for the Macdonald polynomials.

O
Proof that C,(z;q,t) satisfies axiom (2.3)
Recall, that s,y = h,, and < m,, h, >= 0,, giving
1 =< H,, 800 >=< Hy, hy >= cnu(g, 1), (2.9)
and
1 =< H,, s >=< H,, hy >= d,u(q,t), (2.10)

where ¢,,(¢,t) coefficient of m,(z) € H, in axiom (2.1) and d,,(q,t) coefficient of
mu(z) € H, in axiom (2.2). Let o be the filling o : g — 1 which has maj(c) =
inv(c) = 0 since there are no descents or inversions with a filling of all 1’s. By
the definition of C), this gives that the coefficient of 27 = m,(x) is 1. Hence, <

Cl, 5y >= 1 as desired.
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O

Theorem 2.6 that Haglund’s Combinatorial Formula is in fact the Macdonald

polynomial has now been proven.
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3 Macdonald polynomials and Cocharge

In this section, we will show that when ¢ = 0 the Macdonald polynomial can be

expanded in terms of the charge statistic defined by Lascoux and Schiitzenberger.

Proposition 3.1. Specializing the Macdonald polynomial by setting ¢ = 0 gives

Culr;0,8) = Hy(z;0,6) =Y (Y t*Msy(2)), (3.1)

A TeSSYT(\p)

where cc(T') is the cocharge of T. The sum is over all semistandard tableaux T of

shape A and weight u [4].

We will begin with the definition of charge (cocharge) and follow with a lemma

that will be use to prove Proposition 3.1.

3.1 Defining Charge and Cocharge

A word is a sequence of positive integers, referred to as letters. The weight of a word
w is wt(w) = (v1,...,v,) if there are vy one’s, vy two’s, ..., v, n’s in the word. A
word is said to have partitioned weight v if vy > vy > --+ > v,. A standard word
is a word with wt(w) = 1", i.e. a permutation. Let w = ¢jca--- ¢, be a standard
word. The descent set of w™' is Des(w™) = {i € w|i occurs before i + 1 in w}.
We will define the charge and cocharge of a standard word first and then extend this

definition to all words of partitioned weight.
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Definition 3.2. Let w = ci¢3 - - - ¢, be a standard word. The charge and cocharge of

w are defined respectively:

and

i€Des(w)

Graphically, charge and cocharge of w can be calculated by plotting a point above
each letter ¢ € w at height c. Then, connecting the points starting from the letter

equal to 1 and moving to the letter equal to n. For w = 32154:

5 . )
4 ° 4
3 e 3
2 . 2
1 . 1
3215 4 3215 4

We will refer to edges with their left endpoint higher than their right endpoint as
left edges, and edges with their right endpoint higher than their left endpoint as right
edges. 'To calculate charge, label the left edges with a 0, and the right edges with
the number of edges above it, including itself. Charge of w is the sum of the labels,
giving ch(32154) = 2. To calculate cocharge, just interchange the labels on the left

and right edges to get cc(32154) = 8. Observe that for all standard words w, we have
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that ch(w) + cc(w) = (3).

N W e Ot
=N W e Ot

3215 4 3215 4
ch(w)=040+2+0=2 cc(w)=4+34+0+1=38

If v = (v1,...,v,) is the partitioned weight of a word w, then w has vy standard
subwords which we use the graphical representation of the word to define. First plot
the letters of w as before. The first standard subword w; of w is defined from w
by moving from right to left through w selecting the first 1, selecting the first 2 to
the left of the chosen 1, selecting the first 3 to the left of the chosen 2, .... If after
selecting 7 — 1, there is no ¢ to the left of ¢ — 1, then select the the rightmost 4, and
continue looking for ¢ + 1 as above. The process terminates with ¢ when the letter
i + 1 is not represented in w. To find the n + 1 standard subword, w,, 1, repeat
the same process while ignoring letters in the 1% through n'* standard subwords.

For w = 323114123254, the letters are plotted below and the subwords are drawn

one-by-one.
. 5
4 ° ° 4
3 e ° ° 3
2 ° ° ° 2
1 o o ° 1 o o

323114123254 323114123235 4
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—= N W R Ot
=N W o Ot

323114123254 323114123235 4

Definition 3.3. Let w be a word of partitioned weight with standard subwords

wi,...,w,. Then the charge and cocharge of w are

n

ch(w) = Zch w;) Z Z n—1) (3.2)

j=1 J=1 i¢Des(w;)

and

= ch(wj Z Z n—1) (3.3)

J=1 i€ Des(wj)

Graphically, we label the edges just as before and sum over all edges to get ch(w) =

7 or cc(w) = 12. The graph for charge is shown below:

ch(w)=ch(w:) + ch(wsz) + ch(ws)
=243+2=7

5
4
3
2
1

3 2 3 1 1 4 1 2 3 2 5 4

Definition 3.4. Let o be a filling of a partition p with n = |u|. Label the boxes of

Hoas up = (7;1>j1),U2 = (i2>j2)a sy Up = (in7jn) such that:

L oo(uy) > o(ug) > -+ > o(uy),
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2. For each chain of constants o(ug) = --- = o(uy), list the boxes in backwards

reading order, i.e. bottom to top, right to left.

Define the cocharge word of o as the list of row indices of the cells u; in the order

described above, which gives cw(o) = iyig - - - iy,.

For example, for the following filling of p = (5,4, 2) we get:

L ;1 111 Up-~+up=6 4 4 3 3 3 2 2 111
=1 2 1121212 3
3]2[3]0] cw(o) 3 3

We will refer to the word w; - --u, as the filling word of o, denoted f(o). For the
example above, f(o) = 6443332211. The filling word is always in non-increasing

order.

3.2 Relating Macdonald Polynomials and Cocharge
The following lemma will be needed for the proof of Proposition 3.1.

Lemma 3.5. Fix a partition p and a sequence of multisets 3y, Ba, ... with |5;| = ;.
There exists exactly one counter-clockwise free filling o : p — Z such that the weight

of the i row of o(p) is equal to f3;.

Let p = (4,4,1) and 5y = {1,1,3,6}, B2 = {1,2,4,4}, and 3 = {3}. We claim
that the unique tableau with zero counter-clockwise triples with the i** row filled by

ﬁi is:
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Tl
W
—_

Proof. As observed in [4], we need to fill i without counter-clockwise triples. Consider
boxes u,w € pp such that u is to the left of w. These boxes are part of a triple with
box v containing co added directly below u. After standardization, there are two

options for the entries of this triple:

Gl o [2
@ 5] ©

Since the second option gives a counter-clockwise triple and standardization occurs
in reading order, the first row must be filled in non-decreasing order (from left to
right). Fill boxes one a time from left to right, bottom to top. Assume all boxes up
to u = (i,j) have been filled where i > 1. Let B; be the subset of 3; that have not
yet been used to fill p;. Let v = (i — 1, 7), the box directly below u, be filled with y.
Pick x from g; to fill u. Either x <y or x > y. If x <y, then all boxes w to the right
of w in row ¢ must be filled with a z € §; where x < 2z <y to avoid counter-clockwise
triples. Alternatively, if z > y then all boxes w to the right of w in row ¢ must be
filled with a z € 8; where z ¢ (y,z) to avoid counter-clockwise triples. Hence box u

must be filled with the smallest value x € 3; such that x > y else if one does not exist
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the smallest value in (; period. This gives a "no-choice” algorithm to construct the

desired filling. O]

We are now ready to prove Proposition 3.1 as first proven in [4].

Proof. First, we claim that if ¢ is a filling such that inv(c) = 0, then maj(o) =
ce(cw(o)). Look at the entries of the first column of p, ie. ug, = (1,1),...,ug, =

(¢,1). By construction of the cocharge word, uy, corresponds to a 1 in the cocharge

word, ..., ug, corresponds to a £ in the cocharge word. Further, since inv(c) = 0,

¢
o has zero counter-clockwise triples, which (by the ”"no-choice” algorithm shown in
the proof of Lemma 3.5) gives that the bottom row of y is non-increasing, and so
the entry in the first column is the smallest in row one. Recall from Definition 3.4
chains of constants are recorded in backwards reading order, the box uy, corresponds

to rightmost 1 in cw(o). By the proof of Lemma 3.5, the entry in ug, = (i,1) for

7 > 1 is either

1. the smallest entry in row i greater than o((i — 1,1)), if one exists; or

2. the smallest entry in row ¢ entirely.

This then implies that i, corresponds to either

1. the rightmost ¢ to the left of iy, , in cw(o), if one exists, or

i—1

2. the rightmost ¢ in cw(o) entirely.
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Let w = cw(o), then that the first standard subword w; of w in the definition of
cocharge of cw(o) contains the exact same letters of w, i.e. iy, through i,. Further,
it is clear that there is a descent in o(u) exactly when there exists a smallest entry
in row ¢ greater than o((i — 1,1)) which means that i, is the rightmost ¢ to the left
of ig,_, in cw(o). This exactly corresponds to the right edges in the definition of
ce(cw(o)). Tt is also clear that for a descent u (leg(u) + 1) is exactly equal to the the
number of edges above the right edge including itself, i.e. (n — i), from the definition

of ce(cw(co)). Hence we have proven that

ce(wy) = Z 1+ leg(u). (3.4)

u=(i,1)€Des(o)

Selecting the second subword w; from w = cw(o) will be the same as restricting o
to the diagram obtained by deleting the first column of p. Denote this filling as o;.
When we delete the first column, it remains that inv(o;) = 0, thus we have that the
claim follows by induction.

As proved in [5], if P(w) denotes the RSK insertion tableau of w, then cc(w) =
cc(P(w)) for every word with partition content. Let (3(o) be the multiset of pairs the
filling of an entry and its row index (o(u),i) where u = (i,j) € u, and observe that
specifying B(o) is equivalent to giving the multisets B, ..., fy») as in Lemma 3.5.
Again by Lemma 3.5 for a fixed partition p, the map o — (o) is a bijection from
the set of fillings with inv(o) = 0 (counter-clockwise free fillings), to multisubsets of

Zy x Z,. Observe that the first index in (o) comes from f(o) (the filling word),
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while the second index comes from cw(o) (the cocharge word). Applying RSK to
B(0), ordering the pairs in (o) as in the filling word from largest to smallest, creates
the pair (P(0),Q(0)) of semistandard tableau of the same shape A for some \. It
follows that P(0) = P(cw(0)), and 27 = x9(?). Since the map o — (P(0),Q(0)) is a
bijection from counter-clockwise free fillings o to pairs (P(0), Q(0)) of semistandard

tableaux of the same shape such that P has weight u, we can conclude that:

H,(x;0,t) = Z ¢mag(@) .o

inv(o)=0
=20 > ) > af)
A PeSSYT(\p) QEeSSYT(N)

=> (> M),

TESSYT (A

which completes the proof of Proposition 3.1 as desired.
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4 Beyond Partitions

In the previous section, we saw an interesting relationship between cocharge and the
generalized major index statistic on fillings o with inv(o) = 0, (counter-clockwise
free fillings). In this section we explore the possibility that a similar relationship may

exist when looking at fillings of compositions.

4.1 Compositions

We will begin by defining compositions and then expand the definition of inversion
triples of a partition to a composition. A composition v' = (v,...,v},) of n is a tuple
of nonzero parts such that v + - - - + v, = n. Identify a composition with the tableau

that has v/ boxes in the 7" column. For the composition v/ = (2,2, 3,1, 3), we identify

V' with the following tableau

(4.1)

Whereas v/ is the number of boxes in column 4, let v; be the number of boxes in row
i. For (4.1), we have v; = 5, s = 4, and v3 = 2. We can think of a composition
as a permutation of the columns of a permutation. For example, if u = (5,4,2),
then the composition v/ = (2,2,3,1,3) is equal to w(u') = w((uh, ph, wh, 1y, k) =
(py, pus, pthy, s, py) = ' where w € S, is the permutation w = (13)(254) and acts on

the subscripts of p. Explicitly, w(y') = w((3,3,2,2,1)) = (2,2,3,1,3) = v/
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The definition of fillings/super fillings of compositions is analogous to that of
fillings /superfillings of partitions. For a filling o of the composition v’ there are two
types of inversion triples. The first type (counter-clockwise triples) comes from the
original definition of a counter-clockwise triple in a filling of a partition. Recall, a
triple is a set of boxes u,v,w € v/ such that u,v € v; and w € v where i < j with the
below configuration. After standardization x,y, z are the fillings of the boxes u, v, w

respectively:

o

Then u,v,w € V' form a counter-clockwise composition triple if both of the following

are true:
lLz<y<z;y<z<uzx, orz<ax<y,and

2. vy > v}, i.e. the column containing u and v is taller than or equal to the column

containing w.

Alternatively, define a composition triple as a set of three boxes u, v, w € v/ such that
u,v € v; and w € v; where i > j with the below configuration. After standardization

x,1, z are the fillings of the boxes u, v, w respectively:

ajll
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The boxes u, v, w € V' form a clockwise composition triple if both of the following are

true:
lLr<y<z,y<z<z orz<z<y,and

2. v/ < v}, i.e. the column containing u and v is strictly higher than the column

containing w.

Pictorially, u, v, w form a clockwise composition triple if while reading the values from

smallest to largest, we move in a clockwise arc:

© . )

For clarity, we give examples of both counter-clockwise triples and clockwise com-
position triples. Let o be the filling of the composition v/ = (2,2, 3,1, 3) illustrated in
(4.1). There are exactly two counter-clockwise composition triples in the filling and

they are denoted by placing subscripts x,y, and z on the entries.

2] [3] o] [3]
L[4.[5] 5] 1[4]5] [5]
Jrlalel2] [RJrl4le]2] (4.3)
OOy

In addition, there are exactly two clockwise composition triples again denoted by
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placing subscripts x,y, and z on the entries:

2.] [3] 2] [3.]
1z 5y 5 1z 5 5y
211141612 7 211141612

For convenience, we will refer to counter-clockwise and clockwise composition triples

as inversion triples, and specify the type only when necessary.

Definition 4.1. Let ¢ be a filling of a composition ¢/. Define inv(o) as the number

of inversion triples in o (V).

4.2 A New Look at Cocharge
4.2.1 An Alternative Description of Cocharge

Let w be a word of partitioned weight A\ = (Ay,...,Ax). Previously, to calculate
cocharge we partitioned w into n = A; standard subwords wy,...,w,, and then
defined ch(w) to be the sum of the charge of the subwords. In this section, we will
partition w into n new standard subwords w1, ..., w,, and claim that the sum of the
charge of the individual subwords is also ch(w).

To define the new subwords wy, ..., w,, begin with the largest letter to appear
in w. Since ¢(\) = k, k is the largest letter in w. Connect the rightmost %k to the
leftmost & — 1 to appear to the right of &, if one exists, otherwise connect k to the

leftmost &k — 1. Continue in this fashion until there are no smaller letters. The first
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standard subword w; is comprised of the letters selected above. To select the 7"
standard subword w;, first select subwords w; through w;_;. Then let j be the largest
unselected letter. Pick the rightmost 7 and connect it to the leftmost unselected j — 1
to the right of j, if one exists, otherwise connect it to the overall leftmost unselected
j — 1. Continue until there are no smaller letters. For example, let w = 14223143,

then we have:

4 . 4
3 ° 3
2 2
1 e 1
14223143 14223143

Let ch(w) = ch(iy) + - - - + ch(i,). Continuing with the example,

— N W

14223143

Theorem 4.2. [5] Let w be a word. Then statistic charge is equal to ch(w), i.e.

Assuming Theorem 4.2, there is a similar description for cocharge. Let ce(w) =

~

ce(y) + -+ + ce(wy,). We claim that ée(w) = cc(w). Recall, that for all words

w of weight 1™, ch(w) + cc(w) = (). Observe that no matter what method is

used partitioning w into standard subwords, for each 1 < m < k there will still be the
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same number of subwords with weight 1™. Hence if we partition a word into standard
subwords, graph it and label each edge with the number of edges above it including
itself, the sum of the labels will always be S = m; (;) + o+ my, (g), where m; is the
number of standard subwords of length 7. By construction of ¢c and ch, it follows
that ée(w) = S — ch(w) = S — ch(w) implying that ée(w) = ce(w).

To prove Theorem 4.2, Killpatrick used the following theorem by Lascoux and

Shiitzenberger:

Theorem 4.3. [6]/ Charge is the unique function from words to non-negative integers

such that:
1. ch(D) =0,
2. ch(w) = ch(aw) for a € Sy
3. if © # 1 and the word wz has partitioned weight, then ch(wzx) = ch(xw) + 1
4. if wl™ is a word of partitioned weight X\ where \y = m, ch(w1™) = ch(w)
5. if words w and w are Knuth equivalent then ch(w) = ch(w).

A proof to this theorem can be found in [5]. In proving Theorem 4.2, Killpatrick
proved that ch also satisfies properties 1 through 5. By uniqueness, this proved that

ch is in fact charge.
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4.2.2 Cocharge and Compositions

We are primarily interested in developing a relationship between the generalized major
index of fillings with inv(c) = 0 and cocharge. In this process, we also show how the
description of cocharge as cc arises naturally from compositions. We will follow the
methods developed in Chapter 3 to analyze maj and cc.

Let v/ be a composition such that /f < ... < v,. One such composition that meets

these requirements is v/ = (1,2,4):

(4.4)

The following lemma is similar to Lemma 3.5.

Lemma 4.4. Fiz a composition V' where v; < ... < v}, and a sequence of multisets
b1, B2, ... with |B;| = v;. There exists exactly one filling o : v/ — Z, such that

inv(o) =0 and the weight of the it" row of o(V') is equal to (3.

Proof. Regardless of the choice of o, o(v') contains no counter-clockwise triples. Let
n be the number of rows in v/. Again since v] < ... < v, |3,| = 1 forcing the filling
of the entry in top row. Now, fill the boxes column by column from top to bottom,
right to left. Let v = (i,) be the next box to fill. Let 3; C 3 be the numbers in 5;

that have yet to be used to fill v. If | 3| = 1, fill v with the only unused letter in £;.
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On the other hand, if |3;] > 1, then let u be the box directly above v and x = o(u)
(if there is no box u above v, then by construction of v, |BZ| = 1). First suppose v
is filled with y € Bl such that y < x. To ensure that z,y are not part of a clockwise
composition triple, all z remaining in ; must not be in the interval (y,x), else if
z € (y,x) then z would eventually fill a box in row ¢ to the left of v and a clockwise
composition triple would be created since y < z < x. Hence if v is filled with y < z,
then y must be the largest letter in (; that is strictly less than x.

Next, suppose v is filled with y € 3; such that y > z. To ensure that z and y
are not part of a clockwise composition triple, all z remaining in 3; must not be less
than z, else if z < x then z would eventually fill a box in row ¢ to the left of v and a
clockwise composition triple would be created since z < x < y (after standardization
this would translate to z < x < y). Hence if v is filled with y > x, then there does
not exist any letter z € [3; such that z < x and y must be the largest letter in ;.

This gives a "no-choice” algorithm to construct the desired filling. O]

An example of a filling of v/ = (2,4, 6) with 8, = {1, 3,4}, 5> = {1,5}, O3 = {3},

B4 = {5} that has no triples of either kind is:

[2]4

The cocharge word of a composition is defined the same as for a partition as in
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Definition 3.4. For example, we have:

Ur-Up = 6 5
cw(o)= 1 2

54 3 21
4131 2.

[2]4 (4.5)

Proposition 4.5. Let v/ be a composition such that V) < --- < 1. Let o be a filling

of V' such that inv(v') = 0. Then

maj(o) = ce(cw(o)), (4.6)

where maj(o) is the generalized major index statistic defined just as it is for a parti-

tion.

Proof. First we want to translate the filling ¢ into a graph so that each column of
V' becomes its own subword. To begin, plot the cocharge word cw(o) as we did
in the definition of charge. To create the desired graph, follow the algorithm for
constructing a filling ¢/ with no counter-clockwise or clockwise composition triples
given in the proof of Lemma 4.4. Let n be the number of rows in v/ and m be
the number of columns in /. Name the boxes in the rightmost column in v/ as
ug, = (1,m), ug, = (2,m), ..., ug, = (n,m), so ug, = (i,m) is the box in the i'* row
and last column m. By construction of the cocharge word, the box uy, corresponds to
an 7 in the cocharge word. Since the parts of v/ are strictly increasing, ug, corresponds

to the only n € cw(o). To create the subword that corresponds to the last column,
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we will start at the unique n € cw(o). Next observe that by the proof of Lemma 4.4,

the entry in ug, = (i, m) for ¢ < n is either
1. the largest entry in row i smaller than o(uy,, ), if one exists; or
2. the largest entry in row ¢ entirely.

This then implies that the ¢ € cw(o) that corresponds to ug, is either

1. the leftmost i to the right the i + 1 € cw(o) that corresponds to ug,,, € o, if

one exists; or
2. the leftmost i in cw(o) entirely.

We select our first subword in cw (o) using the above reasoning. In other words, start
with the unique largest letter cw(o). Connect i to the leftmost i — 1 € cw(o) to the
right of 4, if one exists; otherwise, connect i to the leftmost ¢ — 1 in cw(o) entirely.
Observe that the descents in the final column of v/ correspond exactly to the left
edges in the graph (as used in the definition of charge, a left edge is one that the left
endpoint is higher than the right endpoint). Thus, to achieve summand of 1+ leg(u)
for a descent u as in the definition of maj(c), we label the left edges with the number
of edges above it including itself, and the right edges with a zero. From figure (4.5)

we have cw(o) = 1241312 which gives:
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— N W o

1231312

To complete the construction, note that there is nothing special about the final
column of 2/ or the first subword selected in cw(o). To continue, ignore the last column
of v/ (the composition that remains still has strictly increasing column heights and
inversion statistic equal to zero), and ignore the first subword selected from cw(o)
(the word that remains still contains a unique largest letter since v; < vj,,). We
are now free to choose the second subword and label its edges in the same fashion.
Iterate this process until all letters have been used. Observe that ce(o) is the sum of

all edges. It is clear that éc(o) = maj(o). In our example, this gives:

éc(o)=14+2+0+1=4

1231312

As noted earlier, it follows easily from Theorem 4.2 that cc(w) = ée(w) for all
words w. Hence, it is proven that maj(o) = cc(cw(o)) for all fillings o of a composi-
tion with strictly increasing column heights, and we have also shown that Killpatrick’s
description of charge arises naturally as the generalized major index of fillings of v;

with no inversion triples where v} < v/_,.



44

4.2.3 A Conjecture

Another specialized composition that we will begin to analyze is v/ = (v1,...,1;})

where v > ... > v < v, < ... <y, and v; < v, for some fixed 1 <¢ < k. In

other words, (v1,...,V!

? 7

) forms a partition and (v, ..., v;) forms a strictly increasing
composition such that the height of the tallest column of the partition is strictly
smaller than the height of the shortest column of the composition. For example,

V' = (3,2,2,4,5) satisfies the conditions for i = 3:

Following the algorithms laid out in the proof of Lemmas 3.5 and 4.4, it is not difficult
to see that for each sequence of multisets 31, Bs, ... with |3;| = v; there exists exactly
one counter-clockwise and clockwise composition free filling o : v/ — Z, such that
the weight of the i*" row of o(1/) is equal to 3;. To see this, one first fills columns v/,
through v, as in Lemma 4.4 (fill top to bottom, right to left). After these columns
are filled, with the remaining letters we fill columns v through ] as in Lemma
3.5 (fill the remaining entries left to right, bottom to top). If 5 = {3,4,5,7,9},

B2 = {1a27678710}7 B3 = {37579}7 By = {278}a and (5 = {4} then the unique
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counter-clockwise and clockwise composition free filling is:

[ 4]
- 8]2
3 5]9
6[10[1]2]8
3[4]5]9]7] (4.7)

Moreover, we can now construct a graph where we pick the first £ — ¢ subwords
as we did in Proposition 4.5 and then the last ¢ subwords as we did in the original
definition of charge 3.3. We will refer to the first k—i subwords selected as wy, ..., wr_;
and the final ¢ subwords selected as wg_;41,...,wy. For filling in figure (4.7), the

following illustration is the graph of the two subwords corresponding to columns four

and five and label edges as in the calculation of cc.

5

4
3
2
1

21 3 2 4 1 2 1 3 1 5 1 3 2 4 2

Next, ignoring the letters already selected, we graph the subwords corresponding to
the first three columns of figure (4.7) and label edges as in the calculation of cc. For

clarity, we will use leave off the edges of the subwords selected above and denote the
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letters used in those subwords with a X instead of a e.

21 3 2 4 1 2 1 3 1 5 1 3 2 4 2

It is not difficult to see that the left edges correspond to descents and the labels
correspond to 1+ leg(u) as in the calculation of the generalized major index. Denote
the sum of all edges of the above graph as cc(w), i.e. ce(w) = ée(iq)+- - -+ ce(wg—;) +
ce(wy) + -+ -+ ce(w;) = ce(wy) + - - - + ce(W—;) + cc(wg—iv1) + - -+ + ce(wy). Hence, for
our example we have that the generalized major index is the sum of all the labels on
the above graphs, i.e. maj(o) = 1143 = 14 = ¢c(w). On the other hand, calculating
cc(cw(o)) also gives 14, but, for this example, the graphs are not identical.

This leads us to a conjecture. It appears that for compositions v/ = (v{,...,v})
where v > ... > v < v < ... <y, and vy < vy, for some fixed i, we have
maj(o) = cc(cw(o)) where o is a counter-clockwise and clockwise composition free
filling.

Let inv(c) = 0 and o be a filling of a composition v’ with v] > ... > v < v, <
... <y and vy < v, for some fixed 1 <1 < k. To prove maj(o) = cc(cw(o)), first
define ch of a word w by selecting the subwords in the same fashion as in c¢ec, but

labeling opposite edges. It is sufficient to prove that the statistic ¢k satisfies Theorem
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4.3 on words w = cw(c). We will first prove that the statistic ch satisfies property

(4) of Theorem 4.3.

Lemma 4.6. Let w = cw(o) where inv(c) = 0 and o is a filling of a composition
Viowith vy > ... > v < v,y < ... <y, and vy < vy for some fived 1 < i < k.
Let w = vx be a word of partitioned weight and x a letter not equal to one. Then

ch(vz) = ch(zv) + 1.

Proof. Let A = (Aq,..., A\) be the weight of vax. We will prove this statement in two
cases: r # m and x = m.

First assume x # m. Let x be in the j*" subword picked. Visualizing the graph,
it is easy to see that in the word xv, x is still in the 5 subword chosen. Moreover, all
edges not connected to x will remain the same, thus not changing their labels. On the
other hand, the right edge connecting some = — 1 to x and the left edge connecting x
to some = + 1 in vz have now been switched. Instead, there is a left edge connecting
some r — 1 to x and a right edge connecting x to some x 4 1 in zv. Hence the label
on the right edge connected to x in zv is one less than the the label on the right edge

connected to z in vz. Since all other edges remained unchanged, éc(vz) = ée(xv) + 1.



48

Below is a simple example where x = 4 and v = 3215.

5 1

— N W

5
4
3
2
1

rw 4 3 2 1 5 ve 3 2 1 5 4

The case where x € vz; for some j is analogous.

Now assume x = m. By construction of vx and by definition of cocharge word, x
is the unique largest letter in vz and xv. Therefore, x is in the first subword chosen.
If 7 is equal to 1, then ¢c = ¢c and we are done.

Assume ¢ > 1. It is not difficult to see that x will pair with the same m — 1 in
both vx and zv. Therefore, all subwords in xv consist of the same letters as they did
in vx. Hence, the charge of all subwords not containing x remains the same, but the

charge of the subword containing x will decrease by exactly one, as desired. O

The only significant step left is to prove that if w and w are Knuth equivalent,
then ch(w) = ch(). We say that two words w and @ are differ by a Knuth relation

if either of the following holds:
lLLz<y<zandw=ay - anrzyami1 - a, and W0 = ay - - - Qp2ZTYApmiy - - Gy, OT
2.x<y<zand w=ay - QuYTZami1---ay and W = aq -+ * * QpY2ZTCaApm11 - - - Q.

Further, we say that two words w and w are Knuth equivalent if there is a chain of
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n

words w!---w" such that w' and wi*! differ by a Knuth relation and w = w® and

wn

= w. With tedious methods, we have proven that if w and w differ by the first
type of Knuth relation, then ch(w) = ch(w), but we leave the details to the reader.
The second Knuth relation has yet to be verified.

More generally, let w be a word of weight A = (Aq,..., ;). Then select the first
1 >4 < \; subwords as in the construction of cAh, denoted w1, ..., w;. Then from the
remaining unselected letters, select the last A\; — ¢ subwords as in the construction of
ch, denoted wy, ..., wy,_;. It appears that the following may hold ch(w) = ch(w;) +

oo+ ch(w;) + ch(wy) + - - - + ch(wy, ;). It appears that the above statement is more

difficult to prove, namely part 3 of Theorem 4.3 no longer appears trivial to prove.
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5 Kostka-Foulkes Polynomials

In this section, we introduce the Kostka-Foulkes polynomials and outline the proof of
Lascoux and Schiitzenberger’s theorem that expands the Kostka-Foulkes polynomial

in terms of charge. Our exposition directly follows that of [8].

5.1 Introductory Information

Define the set of all partitions as
P:{(/\l,,)\n) EZ”|/\1 Z Z/\nZO}

Let 0 be the staircase partition (n —1,n—2,...,2,1,0), and &; € Z™ be basis vectors
of R where ¢; = (0,...,0,1,0,...,0), where the 1 is in the i* position. Let the
symmetric group S, act on R” by permuting the coordinates. If w € S, let (—1))
be the sign of the permutation w, and let w act on polynomials in the variables
Z1,...,%, by permuting the variables. For r € Z>( define the homogeneous symmetric

functions h, = h.(z1,...,x,) by

n

11 1 —1xiz - ;hr(ml’ cos )2

=1

and h, =0if r € Zoy. If A = (A1,--+ , \,) where \; € Z, define hy = hy, - - h,,. For

each pair 1 <7 < j < n define the raising operator R;; : Z" — Z" by

Rij/i =u+e — €j and define (Ri1j1 s Rikjk)‘sﬂ = SRi1j1"'RikJ'k“7
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for pairs i, < j,. Graphically, R;; takes a single box of the j row and attaches the box

to the end of the i row of u € Z". If A = (2,4,5) then Ri3\ = Ri3(2,4,5) = (3,4,4).

R, FFFEP — R

For u € Z", define the Schur function as

su=J[ (1= Rij)h.

1<i<j<n

Let w € S, and u € Z". The straightening law for Schur functions is
SN - (_1)€(w)swo'u,, where w o n= w(u + 5) _ 5

Using the straightening law, we see that composing the operation of raising operators
on Schur functions s, should be avoided. For example, if n = 2 and s; denotes
the transposition in the symmetric group Sy then, by the straightening law, s 1) =

_331((0,1)-1—(1,0))—(1,0) = —8(071) giVil’lg that 8(071) = 0 and so
R12(R128(_172)) = R128(071) = R120 = 0, whereas R%2S(_172) = 8(170) =T + Xa.

Definition 5.1. For p € Z" define the Hall-Littlewood polynomials as
1
1<i<j<n

Definition 5.2. For partitions p and A we define the Kostka-Foulkes polynomials
K)\M(t) by

Q# = Z K)\“@)S)\.

AeP
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5.2 Words and Tableaux

To follow the notation from [8], let

B(A) = SSYT()A) = {semi-standard tableau T with shp(T") = A},
B(\), = SSYT (A, i) = {semi-standard tableau T with shp(T") = X and wt(T') = u},

B(S)yy = {semi-standard tableau T with shp(T) € S and wt(T) € W}.

Let A, and ~y be a partitions such that v; < A; for all i. Then, A/~ consists of the boxes
in A that are not in 7. The length of the skew shape A/~ is £(A\/7) = |A| — |y|. The
skew shape A/~ is a horizontal strip if it contains at most one box in each column.

For example, A/~ consists of the boxes containing x:
[x]
A= x| x where £(\/v) = 6.

! _I_I?I?l (5.1)

For partitions p and v and a nonnegative integer r let

v ® (r) = (r) ® v = {partitions A\|[A/~ is a horizontal strip of length r},
(B(r) ® B(~)), = {pairs v@ T|v € B(r), T € B(y), wt(v) + wi(T) = u},

(B(y) ® B(r)), = {pairs T ® v!v € B(r),T € B(y), wt(v) + wt(T) = u}.
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Let T7 and T5 be tableaux. Define T} * T, as the jeu de taquin reduction of:

L

T

=4

If z is a letter and T is a tableau, define the column insertion of x into T as x x T,
and the row insertion of x into T as T * x.

As in [8], the following lemma gives tableau versions of the Pieri rule [7].

Lemma 5.3. Let v, 1, and T be partitions and r,s € Zxy. Then there are bijections

(B(r) @ B(Y)p «— B(y®(r)u
v T — vxT,
(B(v) ® B(s)); «— B(y®(s))s

T®u — T * u.

Let B(P)z = U B(,P)zl, where

1<i<n

. wt(b) = (0,...,0, iy, fn)
B(P)s; = | semi-standard tableaux b

and gy >0 > pp 20
Let 4% be the unique semi-standard tableau of shape (k) and weight
(0,...,0,k,0,...,0), where the k appears in the 7" entry.

Using the notation from this section we restate Theorem 4.3 from [6]. Charge is

the unique function ch : B(P)> — Zsg such that:
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2. ch(w) = ch(aw) for a € Sy
3. if T € B(P)>is1 and T * i € B(P)>; then ch(T x i*i) = ch(T),

4. if T € B(P)s; and z is a letter not equal to i then ch(z *T') = ch(T x x) + 1,

and

5. if words w and w are Knuth equivalent then ch(w) = ch(w).

5.3 Kostka-Foulkes and Charge

Theorem 5.4. [6] For partitions A and f,

Kty = Y ",

beEB(N)

where the sum is over all semi-standard tableauz b of shape A and weight .

Versions of this proof can be found in [9], [1] and [8]. Below we will outline the

proof found in [8].

Proof. The proof is by induction on n. For the induction assumption, suppose that
equation (5.4) holds for all partitions g = (i1, ..., f,). Then it will be sufficient to

prove that for all partitions (jo, i) = (fto, ft1, - - -, fin)s Quo,w) has the expansion

Qo) = Z s, (5.2)

veP
PEB(V) (g ,m)



95

By the definition of the Hall-Littlewood polynomials, we have

1
Quop) = H —> S(po,m)
0<i<j<n 1 — 1Ry
1 1
= H H — | S(uo.n)
1<j<n 1= tROj) <1<i<j<n 1= tR”)
1
— S Ky, (t .
1<11 1 - tRoj) )Z )5t
<j<n eP

As noted, it is usually necessary to avoid composing raising operators, but with the
particular product of raising operators below, it was proven in [8] that they can in

fact be composed. Thus, by composition of the raising operators:

Qo) = Z Ku(t) Z ¢ Z ngi T Rgzs(uo,k) (5.3)

AeP TEL kezn
=0 ki+-tkn=r
r
= E K/\,u(t) E t g S(,u0+r,/\fk)7
AEP rEZL>0 kezn
- kit tkn=r

where v = XA — (k1,...,k,). Suppose that A/ is not a horizontal strip. Let m the
smallest integer so that A\, —k,, < A\,11,1.e. the index of the first row that violates the

definition of a horizontal strip. For the example below we have v = A—(2,0,1,3,1,0).

[X]

x| — mthrow

T L
XX

Now, let s, € S, be the transposition that switches m and m+ 1. Let ¥ = s,,, 0, so

that by straightening we have s(,4r+) = —S(uo+r3) Where 7; = v; for i # m,m + 1,
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Ym = Ym+1 — 1, and Ypmy1 = Y + 1. Thus A/¥ is not a horizontal strip since

Ym = Vm — 1 = A1 — ka1 — 1 < Ag1. It is not difficult to see that % =~ and so

the pairing of v and 4 provides a cancellation in equation 5.3). Therefore

Qo) = ZKAu(t) Z ¢ Z S(po+r)>

AEP r€l>o ~EP
T Aer®(r)
= Z Z B0 (0) S (uotr)-
v, YEP
AEYR(r)

First by the induction assumption, and then applying the first bijection from Lemma

5.3:

,uo,u Z Z Z trtCh S(po+r)>

v,r vE€P bEB(A
Aev®(r)

= Z Z tr+6h(b)3(uo+m)7

7, bEB(YR(T))

_ Z Z tr+0h(v*T)3(,uo+r,'y) )

7,1 vTE(B(r)@B(Y))u
By applying properties (3) and (4) of charge respectively, it follows that

r+ch(vxT*0H0
Qo) Z Z et S (uo+r.m):

7. v@TE(B(r)®B(7))u

_ Z Z tch(T*OMO *U)S(,uo+7",’y) ]

7,r vTE(B(r)@B(Y))u

Fix v@T € (B(r)® B(Y)), and let p and v be the tableau and shape of T"% 010 v
respectively, i.e. p =T % 0" xv and v = shp(T % 0" % v). In other words, v is the

tableau that is obtained by inserting 0#° x v into T'. Since T € B(v), {(v/v) = r+ 1o-
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Let vy = p+ 0+ r. Then we have

[X]
(v, ) = XX ] %
by
po+7r | 2

Let d be such that pyo+7r+d > vy but po+r+d—1 < v;_;. In other words, add an
increasing staircase, (0,1,2,...), to the end of v4. Let d be the index of the first row
in v that is strictly shorter than the staircase.

The proof now breaks into three parts:

1. d>1and (go+7r,\) = (S0 S4-354—254-3" " S0) © (pio + 7, A), or
2. d>1and (ug+7r,A) # (S0 S4—354—254—3 - - S0) © (o + 7, A),
3.d=1.

In the end, we see that the terms from case 3 contribute to the formula, the terms
from case I are identically zero, and with the terms from case 2 we can construct a

bijection that cancels all terms.

Case 1: Assume d > 1 and (pp +7,A) = (So - -+ S4-3Sd—254-3 - So) © (o + 7, A). It
follows directly from straightening that s, ) = 0.
Case 2: The difficulty of the proof lies in case 2. To create this bijection, one has to

look at the bumping paths that arise when 0#° x v is inserted into 7.
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Case 3: Assume d = 1. Since pp + 7+ 1.y and v € ®(po + ) the horizontal strip
v/ must have its boxes in each of the first po + r columns, which implies

v = (po + r,7). Row uninsertion of the horizontal strip v/ from p (using the
second bijection from Lemma 5.3) recovers the pair 7' ® (po * v) and shows that

0"0 % v is the first row of p. From this we can conclude:

ch(T*0H0 %y
Qo) = Z Z t O s i)

,r vTE(B(r)@B(Y))u

— Z tCh(p)S,,

veEP
PEB¥)(ug.u)

as desired.
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