The Second Derivative Test for Maxima and Minima

Calculus of One Variable

In calculus of one variable, if a smooth function y = f(z) has a critical point at zg,
so f'(zo) = 0, one often uses the second derivative to test if this critical point is a local
maximum or minimum. To understand this, one uses a Taylor polynomial centered at
z =z for f(z), along with the fact that f'(z¢) = 0:

f(@) = flzo)+ f(zo)(z — wo) + 1 f"(z0) (z — 20)? 4 - - higher order terms (1)
= f(zo) + 1" (z0)(x — z0)® + - - - higher order terms. (2)

From this one sees that if f”(z¢) > 0, then f(z) > f(zo) for all 2 sufficiently near z
(z # xg). To make this clearer, one can replace (1) by a similar result using The error term
in Taylor polynomials:

f@) = flzo) + 5" (2)(x — 20)?, (3)

for some value of z between z and z¢. If f”(z) is continuous and positive at z¢, and if z
is sufficiently near zq, then f”(z) > 0. It is now obvious from (3) that f has a strict local
minimum at g, that is, f(z) > f(z) for all z sufficiently near z¢ (z # z¢).

Similarly, if f”(z9) < 0, then f has a strict local minimum at zg.

If f"(z9) = 0, then this test fails and one must use higher order terms in the Taylor
polynomial. The following graphs illustrate this. For each of these the origin is the only
critical point and the second derivative there is zero.
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Calculus of Several Variables
The story for a function of several variables z = f(X) = f(z1,...,,), is similar.
Indeed, we will reduce it to the one variable case. Say we have a function f(X) which we
may imagine to be the temperature at X. If X =P = (p1,...,p,) is a critical point for
f then the first derivative test for critical points tells us that V f(P) = 0. To see this, let
V = (v1,v2,...,v,) be a unit vector at P and consider the function of one variable

p(t) = f(P+1tV),

which we may thing of as the temperature at the point P +¢V on the straight line through
P in the direction of the vector V. If f has a local minimum at P, then ¢(¢) has a local
minimum at ¢ = 0 for every vector V. Thus ¢'()|t=0 = 0. But using the chain rule we



have

df(P+tV) df(pi+tvi, ... ,pn+1tv,)

v = dt - dt
Jf(P A\ Jf(P Vv
_ 7f<8;t o, ---+7f<8; Vo, (4)
= Vf(P+1tV) V.

This is of course the usual formula for the directional derivative of f in the direction of the
vector V. In particular, at ¢t = 0 we have

0=¢(0)=Vf(P)-V.

Since this holds for all possible vectors V we conclude that V f(P) =0, as claimed.

To obtain the second derivative test we again use the chain rule and compute ¢"(¢).

For simplicity, assume n = 2; the general case is essentially identical. From the first term
in (4) we find

d 8f(P+tV)v _ 0 (0f(P+1tV) UQJFi If(P+1tV) o
dt 8961 ! - 8561 8561 ! 8561 8$2 e

= [ (P+tV)vo] + f12(P 4+ tV)vyvg, (5)
where we have used the standard notation fi; = 0%f/0z%, etc. There is a similar formula

for (d/dt)(0f(P +tV)/0z2). Thus at t = 0, after we collect terms and use the fact that
for a smooth function fi3 = fo1, we conclude with the formula

¢"(0) = fir(P)v] 4 2f12(P 4+ tV)vivg + foz(P)vy. (6)

This is a quadratic polynomial in the components of the vector V and suggests that we
write it using the notation developed in the previous section for quadratic polynomials in
several variables. Thus we introduce the second derivative matriz (this is sometimes called

the hessian matriz),
" _ fll(P) fl?(P)
re=(hie) T )

This gives the cleaner expression
() = V- /"(P)V. ™)
Armed with this we can write the Taylor polynomial for ¢ about t =0

FP+tV) = ¢(t) = ¢(0) + ¢'(0)t + 2"(0)t* + higher order terms (8)
= f(P)+i[V.f"(P)V]t*+ higher order terms. (9)

It should be clear from this that if V- f7(P)V > 0 for all directions V(% 0) then for
all X = P 4tV near P, that is, for ¢ sufficiently small, we have f(X) > f(P). Thus f
has a strict local minimum at P. Similarly if V- f(P)V < 0 for all directions V(% 0)
then f has a strict local maximum at P, while if V - f”(P)V assumes both positive and
negative values for various vectors V, then f has a saddle point at P.



We can summarize this using the language of the preceding section.

SECOND DERIVATIVE TEST Say a smooth function f has a critical point at P

if  f"(P) is positive definite then f has a strict local minimum at P

if  f”(P) is negative definite then f has a strict local maximum at P

if  f"(P) is indefinite then f has saddle point at P

if  f”(P) is not invertible then f no conclusion unless f”(P) is indefinite

The last item above is because if f”(P) is not invertible, then the matrix f”(P) can be
neither positive definite nor negative definite (see OBSERVATION 4 in the preceding section).
This is analogous to the situation for a function of one variable when the second derivative
is zero. In Examples 3 and 4 below we will see examples where in these circumstances the
behavior is uncertain.

ExaMpPLE 1. Find and classify all the critical points of f(z,y) = 2* +y* — 4y + 1.
SoruTioN. We first find the critical points by solving

0=f, =4z -4y and O:fy:4y3—4$.
We use the first equation y = z? in the second to find (2%)® — 2 = 0, that is,
0=2-2=2(®-1)=2@'"- )"+ 1) =2(2* - 1)@+ 1) (" +1).

Thus there are three real roots, z = 0,1, —1. Using y = 2® again we find there are three
critical points: Py = (0,0), P, = (1, 1), and P35 = (-1, —1).
We next calculate the second derivative matrix.

" 1222 T

so that at Py, Pg, P3
v [ 0 —4 v [ 12 —4 v [ 12 —4
f (Pl)_(_4 0)7 f (PQ)_<_4 12)7 and f (PS)_(_4 12)

Using the determinant test of the previous section, we see that
f"(Py) is indefinite, while both f”(P3) and f”(Pj3) are pos-
itive definite. Consequently, f has a saddle point at P; and
strict local minima at Py and Ps3. The graph illustrates this
clearly.

ExaMPLE 2. Find and classify all the critical points of

h( )_3$4+4x3—12m2+6
DT TR




SoruTioN. To find the critical points we must solve

23+ 22 — 22

324 + 42 — 122% + 6)
1+ y2 '

6(1+y?)?

0=h, = and 0= hy = 4
Since 2% 4+ 22 — 2z = z(2? + . — 2) = z(z — 1)(z + 2), the first equation is satisfied only
if 2 = 0,1, or —2. Since none of these satisfy 3z* + 423 — 1222 + 6 = 0, the only way
the second equation, h, = 0, is satisfied is if y = 0. We thus obtain three critical points
P1 = (0,0), P2 = (1,0), and P3 = (—2,0)

To classify these critical points we need the second derivative matrix. It is

32’4222 2y(z® +o? —2z)
f//(P) — 1442 (14+92)?
2y(z®+22—22)  —(1-3¢%)(3z?+42° —1222+6) :

(1+92)? 6(1+y%)°

Thus
reo=("0 1) rea=(5

Using OBSERVATIONS 1 and 3 of the preceding section (or
the determinant test) we see that f”(Py) is negative definite,
f"(P3) is indefinite, while f”(Pj3) is positive definite. Thus
P, is a strict local maximum, Py a saddle point, and P3 a

D= D
N——
sV
=
o,
iy
w
TN

strict local minimum. The graph clarifies this.

ExXAMPLE 3. The functions
flay=a—y"  gl@y =224y  hzy=2>-y

each have only one critical point, located at the origin. For each of them the second
derivative matrix there is

2 0

0 0)/)°

This matrix is not invertible and is not indefinite, so the second derivative test gives no
information. To analyze the nature of these critical points one must either investigate the
higher order terms in the Taylor polynomial at the origin, or else look at a graph. Either
way it is clear that the origin is a more exotic saddle point for the first example, a strict
local minimum for the second, and a saddle for the third.

QSN \
NN I
\\-‘.-\'\"é.'..'{:““ f oy Y
) L i
S \\\\\\\\\\\!“W// ’W,’* \ \s\“
z=1a% -y z =% 4yt z =% 4yt



EXAMPLE 4. The examples p(z,y) = z° — 3zy? (a monkey saddle, since there is also a
place for its tail), ¢(z,y) = 2* + y*, and r(z,y) = —2* — y*, all of which have the origin
as their only critical point and have second derivative matrix 0, further show that if at a
critical point the second derivative matrix is not invertible, the nature of the critical point
is determined only by a more thorough study.
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ExXAMPLE 5. The function F(z,y) = 2% + 2zy + y? has critical point where both
0=F,=22+4+2y and 0=F,=2z+2y.

that is, along the whole line y = —z. The second derivative matrix there is

(1),
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which is not invertible, so the second derivative test fails. However | i
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either from the observation that we can write F(z,y) = (z + y)2 %}%&i&%&‘)’[’i[%%%%%ﬁ
or else from the graphs, we conclude that these critical points are \%&““”éz’”%%%Zi’l
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all local minima — but not strict local minima.

Problems
1. Find and classify the critical points of the function in Problem 2 of the preceding section.

2. Find and classify the critical points of the following functions — even if the second
derivative test is not applicable.

(a) f(r1,22) = 23 + 421 + 222+ 10 (i) w(z,y)=2%-2zy+ %yS — 3y
(b) ¢(z,y) =3~ 22+ 2y +2?y? , 2 -3z
(¢) fla,y)=azy— ) ) Y, 2) = —F—+
(d) u(zy,2q) = 2% — 22 (k) k(zy,29) = (22 - 1)e®2
(e) glz,y)=y>— 22 —2° +y 1 2y, z) = —I° 2
v Yy — +z —|—22
(f) v(m,y):(m2+y2)2—8y2 () !]( Y ) 1+ 22
_ coszy 324 — 622 + 1 ,
(g) ¢($1,962) N m (m) h($7y72) = H_—ZQ -
(h) h(z,y) = cosh(2z) () oz, y,2) =2 =3z + y* + 2
DY T oy (0) r(z,y,2)=(1+22+3y—2)%.



3. Find and classify the critical points of the function

This is the z coordinate of a torus standing on its edge; its other
coordinates are y = (2 4+ cos¢) cosf and z =sin ¢ (see fig).

z=2z(¢, 8) = (24 cos ) sin 8, 0<6,¢ < 2m.

4. Find and classify the critical points of the following functions. For the first two, also
draw graphs showing the critical points.

(a)
(b)
(c)

h(z,y) = ($2 + 2y2)61_($2+y2)‘
k(z,y) = ($2 — 2y2)61_(I2+y2)_
q('r7 Y, Z) — (‘rz + 2y2 + 322)61_(172‘}'1/2-}-22)

5. Find and classify the critical points of both of the functions

(a)
(b)

q(z,y,r,8) = ba? + 2zy — 6zs + 5y? — 6ys — 9s — 18zr — 18yr + 3r? + 367s,
h(z,y,r,s) = 52? + 2y — 6xs + 5y? — 6ys + 9s* — 18xr — 18yr + 3r? + 367s.

6. This exercises concerns three games.

(a)

Susan picks any real number z that she wants. Then, Gwen, after hearing Susan’s
choice, picks a real number y of her choice and pays Susan zy — 3z + 2y dollars.
What number should Susan pick? (A negative value of zy — 3z 4+ 2y indicates a
payment from Susan to Gwen.) A graph of the “payoff function” zy — 3z + 2y may
help understanding.

Discuss the modified game in which Gwen chooses first and, then, Susan makes her
choice after hearing Gwen’s choice.

Discuss the modification in which each player writes her choice secretly on a piece of
paper, before hearing the choice of the other player.

Use Maple to simulate these games, with the computer playing the role of Susan and
you playing the role of Gwen. Have the computer make random choices and you make
whatever choice you find appropriate. Tabulate the “payoff” to understand which
strategies are optimal.

7. Let A be a symmetric matrix and let f be the quadratic polynomial f(X)=X-AX.

(a)
(b)
(c)

Show that grad f(X) = AX and that f”(X) = 2A. Note the similarity between this
and the special case of a function of one variable case f(z) = az? where f"(z) = 2a.
If A is invertible, show that the only critical point of f is at the origin, and that this
is a local minimum if and only if A is positive definite.

Extend parts a) and b) to the more general case where the quadratic polynomial has
lower order terms, f(X) =X -AX 4 2b-X + ¢, where b is a vector and ¢ a scalar.
As a check, compare your result with that obtained in the special case of one variable,

flz)= az? + 2bz + c.

8. LEAST SQUARES. Let A be a matrix, not necessarily square, b a given vector, and let
/ be the quadratic polynomial f(X) = ||[AX — b||?. The problem is to minimize f. If A is
invertible, just let X be the solution of AX = b. The difficulty is if A is not invertible, say
because there are more equations than unknowns. Then f(X) measures the discrepancy



between AX and b. The optimal X is the value that minimizes this discrepancy. This
problem arises, for instance, when one tried to fit experimental data to a straight line that
one does not expect to pass through all of the points.

(a)
(b)

(c)

Show that grad f(X) = 24T (AX —b).

Compute the second derivative matrix, f”, and show that if the only solution of the
homogeneous equation AZ =0 is Z = 0, then f has exactly one critical point and it
is a local minimum.

Use this to find the “optimal” solution of the following set of four equations in two
unknowns:

204+ 3y =
3x+3y =
204+ 2y =

z =—1

9. If f(z,y) has a local minimum at the point (a, b), show that f”(a,b) must be positive
definite or semi-definite. [Suggestion: First state and prove the version for a function of one
variable].

10. If u(z,y) has the property that 2ug, + 3u,, = —1, show that u cannot have a local
minimum anywhere.

11. If the function f(z,y) has the property that f”(z,y) is positive definite or semi-definite
at every point (z, y), show that the surface z = f(z,y) lies above its tangent plane at every
point, that is, the surface is convexr. [Suggestion: First try the analogous assertion for a
function of one variable.]

12. Let k(z,y) = (y — 22)(y — 22%).

(a)
(b)

(c)

Show that the origin is the only critical point.

Show that k(z,y) > 0 for all points (z,y) except those in the “horn” region z2 <
y < 222, where k(z,y) < 0. Thus the origin is a saddle point.

On the other hand, note that moving from the origin along straight lines the function
is positive for at least a short distance. Since k(0,0) = 0, as one approaches the
origin along straight lines, the origin appears to have a local maximum. The point is
that because the second derivative matrix £”(0,0) is not invertible, the behavior of
k near the origin is too complicated to be resolved by just considering the behavior
of k along straight through the origin. [However, had £”(0,0) been invertible, then
straight lines would have been adequate].

13. Let A be an invertible symmetric matrix and let f(X) = (X - AX) e~ IXIF,

(a)
(b)

Show that the critical points of f are exactly the origin and all the unit vectors that
are eigenvectors of A.

In addition assume that A is a positive definite n X n matrix with distinct eigenvalues
0 < Ay < Az < ...\, and corresponding orthonormal eigenvectors Vq,...,V,. Show
that f has a strict local maximum at the two points £V, a strict local minimum at
the origin, while the remaining 2(n — 1) critical points are saddle points. [Suggestion:
first understand the case when A is a diagonal matrix].



