Inner Products and Least Squares

Preliminaries

The goal of these notes is to present the method of least squares. The simplest way
to view this conceptually is using the inner product. We will need a few observations
using inner products. In what we do, we will be careful to use only the general
properties of an inner product, not those that are only special to R™. This way our
results will hold even in situations where the inner product is defined by an integral
or some other rule.

OBSERVATION 1. If X is a vector with the property that (Xo, ¥Y') = 0 for all vectors
Y, then Xy = 0. In other words, the only vector X, that is perpendicular to all
vectors is the zero vector. The proof is simple. Since Y can be any vector, we make
the special choice Y = X;. Then 0 = (X,, Y) = (X, Xy) = || Xo]|? so Xy = 0.

OBSERVATION 2 adjoint. Let A be a matrix, not necessarily square. We define the
adjoint of A, written A*, to be the matrix that satisfies the following identity for
any choice of vectors X and Y

(X, AY) = (A*X, Y). (1)

Although this may appear strange, the matrix A* arises frequently in applications.
By writing X and Y in coordinates, one finds

(X, AY) = Zx (zjj aijyj> => (Z az-jx,) y; = (ATX, Y).

J

Thus A* is just AT, the transpose of A. The only reason the transpose is important
is because one so frequently needs the identity (1).

A matrix is called symmetric (or self-adjoint) if it equals its adjoint: A = A*. It
is called anti-symmetric (or skew-adjoint) if A* = —A.

OBSERVATION 3 orthogonal projection onto a line. Let X and Y be given vectors.
We would like to write Y in the form Y = ¢X + V', where V is perpendicular to X .
Then the vector cX is the orthogonal projection of Y in the line determined by
the vector X.

How can we find the constant ¢ and the vector V7 We use the only fact we know:
that V is supposed to be perpendicular to X. Thus we take the inner product of
Y =¢cX +V with X and conclude that (X, Y) = ¢(X, X), that is

(X, Y)
C = .
X1



Now that we know ¢, we can simply define V' by the obvious formula V =Y —¢X.
At first this may seem circular. To convince your self that this works, let X =
(1,1), and Y = (2,3). Then compute ¢ and V' and draw a sketch showing X, Y, cX,
and V.
Since ¢X 1 V', we can use the Pythagorean Theorem to conclude that

IY[[* = SIXN + (V" > X))
From this, using the explicit value of ¢ found above we obtain the Schwarz inequality
(X V) < IXNIY-

Notice that this was done without trigonometry. It used only the properties of the
inner product.

OBSERVATION 4 orthogonal projection into a subspace. If a linear space has an inner
product and S is a subspace of it, we can discuss the orthogonal projection of a vector
into that subspace. Given a vector Y, if we can write

Y=U+YV,

where U isin S and V is perpendicular to S, then we call U the projection of Y into
S and V the projection of Y perpendicular to S. The notation U = PsY.V = PgY
is frequently used for this projection U. By the Pythagorean theorem

Y1 =1Ul* +1IvI*, (U= Psy, V="FgY).

It is easy to show that the projection PsY is closer to Y than any other point in
S'. In other words,

|Y — PsY|| < ||Y — X|| forall X in S.

To see this, given any X € S write Y — X = (Y — PgY) + (PsY — X) and observe
that Y — PgY is perpendicular to S while PsY and X, and hence PgY — X are in
S. Thus by the Pythagorean Theorem

|V = X||? = |V = PsY||* + || PsY — X | > ||V — PsY|*.
This is what we asserted.
Least Squares

Say you measure the same quantity ¢ four times and get the numbers ¢, ¢o, c3
and c,. What should you use as your best estimate of the number ¢? One approach
is to pick the number ¢ to minimize the square of the error

Error(c) = (c1 — ¢)* + (ca — ¢)* + (c3 — ¢)? + (ca — )2



By a calculation, perhaps using calculus, this gives the mean or “average”
. c1t+co+c3+cey
= 1 .

The essential reason the mean c¢ is a “good” measure is that it minimizes this Error (c).

Now we move to a more complicated problem. Say we are given n experimental
data points (z1, ¥1), (z2, ¥2),.--,(Zn, yn) and want to find the straight line y =
a + bx that fits this data best. How should be proceed? Ideally we want to pick the
coefficients a and b so that

a+bxry = 1y
a+bry = ys

a+br, = y,.

However, these are n equations for the two unknowns a, b, and it is unlikely that
we can solve them exactly. Following the suggestion of the simpler situation we just
considered, we can pick a, b to minimize the error

Error(a,b) = (a + bz — y1)* + (a + bxy — y2)* 4+ - - - + (0 + bap — ya)*

One can find ¢ and b using calculus. But one gets more insight by using the inner
product. We write the above equations in matrix notation as

1 Y1
av=| b ™ (Z>: woly,
1 z, Yn

that is, AV =Y. Then
Error(V) = ||JAV - Y%

Thus, we want to pick V' so that W = AV is as close as possible to Y. Notice
that W must be in the image of A. From OBSERVATION 4 above, we want to let W
be the orthogonal projection of Y into the image of A.

How can we compute this? Notice that AV — Y will then be perpendicular to
the image of A. In other words, AV — Y will be perpendicular to all vectors of the
form AU for any vector U. Thus by OBSERVATION 2

0= (AU, AV — Y) = (U, A*(AV — Y)).

But now since the right side holds for all vectors U we can apply OBSERVATION 1

to conclude that
A*AV = A*Y. (2)



These are the normal equations for V' and are what we are seeking.

Although this may seem abstract, it is easy to compute this explicitly.

1 T
4 (1 1 -1 1z | n 2T
AA_<$1 Ty - xn> _<E-’Ej ZIE?)
1 =z,

The computation of A*Y is equally straightforward so the normal equations are two
equations in two unknowns:

(< £2)(5)= (22
2T E.’L‘? b > xy )

These can be solved using high school algebra.

Identical methods can be used to find, for instance, the quadratic polynomial
y = a + bx + cx? that best fits some data, or the plane z = a + bz + cy that best fits
given data. The technique of least squares is widely used in all area where one has
experimental data.



