Math 210 Jerry L. Kazdan

Vectors — and an Application to Least Squares

This brief review of vectors assumes you have seen the basic propartrestors
previously.

We can write a point irR" as X = (x1,...,%n). This point is often called &ector. Fre-
quently it is useful to think of it as an arrow pointing frometbrigin to the point. Thus,
in the planeR?, X = (1, —2) can be thought of as an arrow from the origin to the point
<1a _2)'
Algebraic Properties
Alg-1. ADDITION: If Y = (y1,...,¥n), thenX+Y = (X3 +V1,...,Xn+ Yn) -
Example In R%, (1,2,-2,0)+(—1,2,3,4) = (0,4,1,4).
Alg-2. MULTIPLICATION BY A CONSTANT: CX = (CX,...,CX).
Example In R4, if X = (1,2,—2,0), then—3X = (—3,-6,6,0).

Alg-3. DISTRIBUTIVE PROPERTY C(X +Y) =cX+cY. This is obvious if one writes it
out using components. For instance RA:

C(X+Y) =c(X1+Y1,X2+Y2) = (CX1 + Cy1,CX + CY2) = (CX1,CX) + (Cy1,CY2) = CX+CY.

Length and Inner Product

NIP-1. ||X|| := /X2 + - +x2 is thedistancefrom X to the origin. We will also refer to

| X|| as thdlengthor normof X. Similarly || X —Y/|| is thedistance between X and.Y
Note that||X|| = 0 if and only if X = 0, and also that for any constamive have||CB|| =
[el[IX][- Thus, | =2X]| = [|2X]| = 2[[X]|.

LIP-2. Theinner productof vectorsX andY in R" is, by definition,
(X,Y) :=X1y1 +XaY2 + - - - + XnYhn. 1)

This is also called thdot productand writtenX - Y. The inner product of two vectors is a
numbernotanother vector. In particular, we have the vital identi¥/||> = (X, X) relating
the inner product and norm. For added clarity, it is somegimgeful to write the inner
product inR" as (X, Y)gn.

Example In R4, if X =(1,2,-2,0) andY = (—1,2,3,4), then (X,Y) = (1)(-1) +
(2)(2)+(=2)(3) +(0)(4) = -3.

HIP-3. ALGEBRAIC PROPERTIES OF THE INNER PRODUCTThe following are obvious
from the above definition ofX, Y):

). (X, X)>0,with (X,X)=0 if(andonlyif) X=0,

i), (XY, W) = (X, W)+ (Y,W),



iiM). (cX,Y)=c(X,Y),
iv). (Y, X) =(X,Y).
These four properties can be viewed asdakmsfor an inner product of real vectors.

REMARK: If one works with vectors := (z1, z», ..., z,), havingcomplex numbers; zas elements,
then the definition of the inner product must be modified since, for a compiesberz:= x+ iy
we have|z|? = x> +y? = zz, wherez:= x— iy is thecomplex conjugatef z. Using this we define
theHermitian inner producby

(W, Z) :=wW123 +WoZp + - - - + WnZn. (2)

(note: many people put the complex conjugate on the first termjnstead of thez;). The pur-
pose is to insure that the fundamental propéiy|2 = (Z, Z) > 0 still holds. Note, however, that
the symmetry propertyY, X) = (X,Y) is nowreplacedby (Z, W) = (W, Z), and hence, as the
following proof shows (W, cZ) = c(W, Z):

PROOF (W, cZ) = (cZ,W) = (cZ,W) =T(Z, W) =T(W, Z)).

For complex vectors or matrices oabvaysuses a Hermitian inner proudest.

IP-4. GEOMETRIC INTERPRETATION The definition (1) of the inner product is easy to
compute. However, it is not at all obvious that the inner picids useful — until one
interprets it geometrically:

Y = [IX][[[Y[| cosB, 3)

where® is the angle betweeX andY. Since coé—8) =
cosB, the sense in which we measure the angle does not
matter. 0

Y

To prove (3), we can restrict our attention to the two dimenai plane containingX and

Y. Thus, we need consider only vectorsRA. Assume we are not in the trivial case where
X orY are zero. Letx and 3 be the angles thaX = (xg,Xx2) andY = (y1,Yy2) make with
the horizontal axis, s =3 —a. Then

x1 = [|X]|| cosa and  xp=||Y||sina.
Similarly, y1 = ||Y||cosp andy» = ||Y|| sinf3. Therefore

(X,Y) =x3y1 + X2y2 = [|X]|||Y|| (cosa cosp + sina sinp)
=[IX[[[[Y]|cosB—a) = [|X]|[[Y]| cosb.
This is what we wanted. Alternatively, the equivalence 9¢fgd (3) can be seen as just a
restatement of the law of cosines from trigonometry.

IP-5. GEOMETRIC CONSEQUENCE X andY are perpendicular if and only X, Y) =0,
since this means the anglebetween them is 90 degrees so @es0. We often use the
word orthogonalas a synonym foperpendicular
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Example The vectorsX = (1,2,4) and (0,—2,1) are orthogonal, sincéX,Y) =0—4-+
4=0.

Example The straight line—x+ 3y = 0 through the origin N

can be written agN, X) =0, whereN = (—1,3) andX =

(x,y) is a point on the line. Thus we can interpret this line <N,X> =0
as being the points perpendicular to the vedtorThe line
—X+3y =7 is parallel to the line-x+ 3y =0, except that it
does not pass through the origin. This same velit@s perpendicular to it. 1 is a point
on the line(N, X) = ¢, so(N, Xo) = ¢, then we can rewrite its equation @s, X — Xg) =0,
showing analytically thalN is perpendicular toX — Xg.

0

Many formulas involving||X|| are simplest if one rewrites them immediately in terms of
the inner product. The following example uses this approach

Example [PYTHAGOREAN THEOREM If X andY are orthogonal vectors, then the
Pythagorean law holds:
X YIZ = X2+ Y]

SinceX andY are orthogonal, theX, Y) = (Y, X) =0, so, as asserted

IX4+Y|?=(X+Y,X+Y)
= (X, X) + (X, Y) 4+ (Y, X) +(Y,Y)
=[IX]|%+[|Y] %

since if a vectorZ is orthogonal to all other vectors, in particular, it is @gjonal to itself.
Thus||Z||?=(Z,Z) =0 soZ =0.

REMARK: Observe that the zero vector is orthogonal to all vectotss the only such
vector since if(Z,V) = 0 for all vectorsV, thenZ = 0. To prove this, since we can pick
any vector forV, this is true in particular iV = Z. But then||Z||> = (Z,Z) = 0 so the
only possibility isZ =0.

IP-6. MATRICES AND THE INNER PRODUCT If A is ak x n matrix (k rows, n columns

soA: R" — RX), we want to computgAX, Y)x« for vectorsX € R" andY < RK in order

to introduce the concept of thajoint of a matrix.

Lete; =(1,0,0,...,0),...,e,,=(0,0,...,0,1), be the usual standard basis vector&®lh

andg; = (1,0,0,...,0),... &:= (0,...,0,1) be the usual basis vectorsR¥. Recall that
in matrix notation, we usually think of vectors eslumn vectorslf A= (aj) , itis easy to

see thatAg is the first column ofA, Ae, the second column ohand so on. For instance

a1 & ... ain) (O ap2
a1 a2 ... an| |1 a2

AG = : : . : o : ) (4)
& a2 ... an/ \O ako

3



In words, the image o& is the second column @&, just as asserted.
Using this observation it is clear théhey, €1)pk = a12. Similarly,

(Aa, &j)pk = aji. (5)
We use this to define thedjoint of the matrixA, written A*. It is defined by requiring that
(AX,Y) = (X, A"Y) or, more formally, (AX,Y)gk = (X, A*Y)gn. (6)

for all vectorsX € R" andY e RX.

The formula (6) looks abstract but is easy to use — althoughigtstage it is not at all
evident that it is useful. For the moment, wride= A", so (6) says(AX,Y) = (X, BY).
Say the elements d are bjj. We would like to compute thé;j’s in terms of the known
elementsy; of A. From (4) applied td, we know thatBe; is the first column oB. Thus
(€2, Be1) = bpy. But the definition we havéX, BY) = (X,Y) so

bo1 = (e, Be1) = (Aep, €1) = ago.

In the same waybij = aji foralli=1,2,...n, j =1,2,...k. In other words, the first row
of B= A" is simply the first column oA, etc. Thus we interchange the rows and columns
of A to getA*. For this reasom\" is often called théransposeof A and writtenAT .

Example
aig ag1
) 11 A1 &
if A= (1l 912 <13 , then A =AT = ai;p asn ). (7)
dp1 a2 a3
aiz az3

A square matrixA is calledself adjointor symmetriaf A= A*. Itis calledskew-adjoint
or anti-symmetriégf A= —A*. An obvious property is thad™* = (A*)* = A.
As an example, let’s obtain the propeiB)* = B*A*. We begin using the definition (6)
applied toAB:

((AB)*X,Y) = (X, (AB)Y). (8)

But (AB)Y = A(BY) so
(X, (AB)Y) = (X, A(BY)) = (A*X, BY) = (B*(A*X), Y) = ((B* A )X,Y).  (9)

Comparing (8) and (9) we find th@AB)* = B*A*.

One consequence is thAtA is a symmetric matrix, even iA is not a square matrix, be-
cause(A*A)* = A*A™ = A*A. In particularA*A is a square matrix. SimilarlpA* is a sym-
metric matrix. For many applications it is useful to notibatt(A*AX, X) = (AX, AX) =
|AX||? > 0 forall X.



X1
REMARK: If, as is usual, we think of a vectot := | : | as a column vector, then we
Xn
can treat it as a X n matrix and observe the inner produgt, Y) = XTY, which is often
useful. Also(X, AY) = XTAY so computing inner products is now under the umbrella of
matrix multiplication. This observation is quite valualblecomputations.

Derivatives of Vectors
D-1. If X(t) = (xa(t),...,Xn(t)) describes a curve iR", then itsderivativeis
dX(t)
X/(t) = =5 = 040 X 1)),
One can think of this as theelocity vector It is tangent to the curve.
Example If X(t) = (2cog,2sint), then this curve is a circle of radius 2, traversed counter-
clockwise. Its velocity isX'(t) = (—2sint,2cog) and itsspeed|X'(t)|| = 2. For instance,
X'(0) = (0,2) is the tangent vector & (0) = (2,0). The curveY(t) = (2cos3,2sin3)
also describes the motion of a particle around a circle atisad, but in this case the speed
is [[Y'(t)[| =6
D-2. DERIVATIVE OF THE INNER PRODUCT If X(t) andY(t) are two curves, then

d _dX(t) dY(t)
Gt X, Y(0) = (=5 Y () +{X (1), =5—)- (10)

or, more briefly,(X, Y) = (X", Y) + (X, Y').
To prove this one simply uses the rule for the derivative ofapct of functions. Thus

& x0.¥0) = S a0yt
= (X1 +Xay1) + (Y2 +X2Y5) +
= (XYL +XoY2+ -+ ) + (Xay] +XoYo + )
= (X", Y)+ (X, Y.

Example
H 7= gt X0, X(1)) = 2(X (1), X'(1)).- (11)

As a special case, if a particle moves at a constant distarficen the origin, ||X(t)| = c,
then 0= dc?/dt = d||X(t)||?/dt = 2(X(t), X'(t)). In particular, if a particle moves on a
circle or a sphere, then the position veckft) is always perpendicular to the velocity
X'(t). This also shows that the tangent to a circké(t), is perpendicular to the radius
vector, X(t).



Orthogonal Projections

Proj-1. ORTHOGONAL PROJECTION ONTO A LINE Let X andY be given vectors. We
would like to writeY in the formY = cX+V, whereV is perpendicular tX. Then the
vectorcX is theorthogonal projection of Y in the line determined by the vectex.

How can we find the constartand the vectoV ? We use the only fact we know: thdtis
supposed to be perpendicularXo Thus we take the inner Y
product ofY = cX+V with X and conclude thatX,Y) = |
c(X, X), that is
L XY
X1z

Now that we knowc, we can simply defin& by the obvious formuld/ =Y —cX.

At first this may seem circular. To convince your self thastiorks, letX = (1,1), and
Y =(2,3). Then compute andV and draw a sketch showing, Y, cX, andV.

SincecX L V, we can use the Pythagorean Theorem to conclude that

Y11 = SIX[1+ V(17 > e[IX]|2.
From this, using the explicit value affound above we conclude that
XY)N® 2
P (452 ) IR
X112
and obtain th&chwarz inequality
[ YL < XYL (12)

Notice that this was done without trigopnometry. It used athlg properties of the inner
product.

Proj-2. ORTHOGONAL PROJECTION INTO A SUBSPACEIf a linear space has an inner
product andS is a subspace of it, we can discuss the orthogonal projectiarvector into
that subspace. Given a vectdr if we can write

Y=U-+V,

whereU isin SandV is perpendicular t&, then we calU the projection ofY into Sand
V the projection ofY perpendicular t&. The notationd = PsY, V = PSiY is frequently
used for this projectioty .



Y
2

By the Pythagorean theorem
IYIZ=UIP+IVIZ (U =P,V =PgY).

It is easy to show thahe projection BY is closerto Y than any other point in B other

words,
IIY —PsY || < [|Y = X]| forall X in S.

To see this, given anX € Swrite Y — X = (Y — PsY) + (PsY — X) and observe that —
PsY is perpendicular tds while PsY and X, and hencePsY — X are inS. Thus by the
Pythagorean Theorem

IY = X2 = [[Y = PsY ||+ [[PsY — X(|? > |[Y — PsY %

This is what we asserted.

Problems on Vectors

1. a) For which values of the constamtand b are the vectort) = (1+a, —2b,4) and
V =(2,1,—1) perpendicular?
b) For which values of the constaat andb is the above vectdd , perpendicular to
bothV and the vectoW = (1,1,0)?

2. LetX =(3,4,0) andY = (1,—-1,1).

a) Write the vectoly inthe formY =cX+V, whereV is orthogonal toX. Thus, you
need to find the constawtand the vectoW . Interpretation: You are decomposing
Y as a sum of vectors, one in the directionofand one perpendicular 9.

b) Compute||X||, ||Y]|, and|V|| and verify the Pythagorean relation
IV = [[eX[|?+ V]2
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. [CONVERSE OF THEPYTHAGOREAN THEOREM] If X andY are real vectors with the
property that the Pythagorean law hold||2 +||Y||? = || X + Y|, thenX andY are

orthogonal.

. If a vector X is written asX = aU + bV, whereU andV are non-zero orthogonal
vectors, show thaa = (X, U)/||U||? andb = (X, V)/||V|?.

. The origin and the vector®, Y, and X +Y define a parallelogram whose diagonals
have lengthX +Y and X —Y. Prove theparallelogram law

IXHYI2 - [1X = YIJ2 = 201X + 21| Y]]

This states that in a parallelogram, the sum of the squatég ¢éngths of the diagonals
equals the sum of the squares of the four sides.

6. a) Find the distance from the poif®, —1) to the straight line 8—4y = 0.
b) Find the distance from the straight ling-34y = 10 to the origin.
¢) Find the distance from the straight lim&+ by = c to the origin.
d) Find the distance between the parallel li@est by = ¢ andax+ by =y.
e) Find the distance from the plaag+ by-+ cz= d to the origin.

7. The equation of a straight line iR can be written a(t) = Xo+tV, —o0 <t < oo,
where X is a point on the line an¥ is a vector along the line (in a physical setting,

V might be thevelocityvector).

a) Find the distance from this line to the origin.
b) If Y(S)=Yo+sSW, —e < s< o, is another straight line, find the distance between

these straight lines.

8. LetPy, Py, ..., B be points inR". For X € R" let
Q(X) = [[X = Py[|2+ [[X = Pal[® 4+ [ X — R[>,

Determine the poinK that minimizesQ(X).

9. a) If X andY are real vectors, show that
1
(XY} = (IX+ Y[ = X =YP).

This formula is the simplest way to recover properties ofitireer product from
the norm.



b) As an application, show that if a square mafas the property that it preserves
length, so||RX|| = || X]|| for every vectorX, then it preserves the inner product,
that is, (RX; RY) = (X, Y) for all vectorsX andY .

10. If one uses the complex inner product (2), show that themehtsA* are the transpose
conjugate A" = (), of the elements oA = (ay).

11. a) If a certain matribXC satisfies(X,CY) = 0 for all vectorsX andY, show that

c=0.
b) If the matricesA and B satisfy (X, AY) = (X, BY) for all vectorsX andY, show
thatA = B.

12. a) Give an example of ax33 anti-symmetric matrix.
b) If A is any anti-symmetric matrix, show th&X, AX) = 0 for all vectorsX.

: : : : - dX : :
13. SayX(t) is a solution of the differential equatlo%T = AX, where A is an anti-
symmetrianatrix. Show that|X(t)| = constant.

Application to the Method of Least Squares
THE PROBLEM. Say you have done an experiment and obtained the data geidtd),
(0,-1), (1,-1), and(2,3). Based on some other evidence you believe this data should fit
a curve of the formy = a+ bx?. If you substitute your datéx;,y;) into this equation you
find

a+b(-1)%?= 1
a+b(0)?2 =-1 (13)
a+b(1)? =-1
a+b(2? = 3

This system of equations Bver determinedince there are more equations (four) than
unknowns (two:a and b). As is the case with almost all overdetermined systems, it i
unlikely they can be solved exactly.

We rewrite these equations in the matrix foA =W, where

11 1
10 a -1
A= 1 1| VZ(b)’ and W= 1
1 4 3



We refer toA as thedata matrixandW as theobservation vector

Instead of the probably hopeless task of solviWy= W, we instead seek a vector that
minimizes the error (actually, the square of the error).

Q(V) = [|AV — W%

If we are fortunate and find an exact solution®f =W, so much the better since then
Q(V) = 0. We will find this error minimizing solution in two differémways, one using
calculus, another using projections.

Summary. The general problem we are facing is:
Given: A data matrixA and an observation vectyy,

To find: The “best solution” ofAV =W. For us, “best” means minimizing the error
QV) = [|AV W12,

SOLUTION USING CALcuULUS. One approach is to use calculus to find the minimum by
taking the first derivative and setting it to zero. We will dasthere only using calculus
of one variable (so we won't use partial derivatives, alttousing these gives an entirely
equivalent approach).

SayV (this is what we want to compute) gives the minimum,X) > Q(V) for all X.
We pick an arbitrary vectoZ and use the special family of vectaxgt) =V +tZ. Let

f(t) == Q(X(t)) = | AX(t) - W/|2.

Since Q(X(t)) > Q(V) = Q(X(0)) we know thatf(t) > f(0) so f has its minimum at
t =0. Thusf’(0) = 0. We compute this. From (11)

£/(t) = 2(AX(t) — W, AX' (1)) = 2(AX(t) — W, AZ).

In particular,
0= f'(0) = 2(AV —W, AZ).

We use (6) to rewrite this aéA*(AV —W), Z) = 0 (historically, this was one of the first
places where the adjoint of a matrix was used). But now sihcan beanyvector, by the
REMARK at the end of propertip-5 above, we see that the desirédnust satisfy

A*(AV —W) = 0,

that is,
ATAV = A*W |. (14)

These are the desired equations to compute As observed above, the matriX‘A is
always a square matrix. The fundamental equation (14) isctgienormal equation
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Example We apply this idea to (13). Since
. (1111
A _<1 01 4)’

«x (4 6 wny [ 2
A'A = (6 18) and AW_<12).

The normal equationa*AV = A*W are then
4a+ 6b=2
6a+18b =12

Their solution isa= —1, b= 1. Thus the desired curye= a+ bx® that best fits your data
points isy = —1+ x2.

then

SOLUTION USING PROJECTIONS As above, given a matriA and a vectolV we wantV
that minimizes the error:

Q(V) = AV —W||2.
Thus, we want to pick/ so that the vectol := AV is as close as possible W. Notice
thatU must be in the image oA. From the discussion of projections (demj-2 above),
we want to letU be the orthogonal projection ¥ into the image ofA.

How can we compute this? Notice th&7 — W will then be perpendicular to the image
of A. In other words AV —W will be perpendicular to all vectors of the for&Z for any
vectorZ. Thus by (6) above

0= (AZ, AV —W) = (Z, A"(AV —W)).

But now since the right side holds fall vectorsZ we can apply the RMARK at the end
of Ip-5 above to conclude that

ATAV = A"W. (15)
These again are theormal equationsfor V and are what we sought. Of course they are
identical to those obtained above using calculus. Althotigh may seem abstract, it is
easy to compute this explicitly.

Example Here is a standard example using the normal equations. ®agrevgivenn
experimental data point&xy, y1), (X2, Y2),...,(Xn, Yn) @and want to find the straight line
y = a+ bx that fits this data best. How should be proceed? Ideally we teapick the
coefficientsa andb so that

at+bxy = w1
at+bx = y3
a+bx, = yn
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These aren equations for the two unknowrss b. If n> 2 itis unlikely that we can solve
them exactly. We write the above equations in matrix noteéisAv =Y, that is,

=
X
[1

=

AV

|
=
o
7 N
T Qo
N———
|
N
|
=<

Next we want the normal equatio®s AV = A*Y. Now

1 X1
g 111 1 x n X
A*A = _ _
(Xl Xo --- Xn) (ZXJ zij)
1 xn

The computation oA*Y is equally straightforward so the normal equations are tgume
tions in two unknowns:

n > X a\ > Yj
(s 52)(5)- (5 ) a9

These can be solved using high school algebra. The sol&tion i

—-y= m(X_)_()7 (17)

<

where

1‘ Vi, and m= Z(XJ_X)(XJ;V)
nlgjgn Z(XI_X)
Notice that the straight line (17) passes throygly). The equations (16) are particularly

simple to solve ifx =0 andy = 0. The general case is reduced to this special case by the
natural substitution

X= - Z Xj, y=

Xj=%Xj—% Yi=Yyj—V (18)
| used this to get (17).

Note that the change of variables (18) merely shits the mtigithe center of mass of the
data and has no influence on interpreting the data. The pitdoks the same. This shift of
the origin is a routine first step in understanding data. [&ilyiwe often rescale the data,
say measuring time in hours or days instead of minutes. Tikerénear transformation of

this sort if one measures temperature in Celsius rather thlareRheit. All of these changes
preserve the essential structure of the data. They makesiadding the data easier.

In these and related computations it is useful to introdbeedtata as vectors:
X=(X1,X2,...,%Xn) and y=(y1,¥2,...,Yn)
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and, in occasionally confusing notation, identify the agmXx with the vectorx = (X, ..., X)
havingn equal components. We also use the “data inner product” and “data norm”

KXY S=XY1+ XY+ Xy [XZ =X X

In statistics,< x—X,y—y>> is called thecovariance of x and yand write Co\x,y).
Using this notation the slope of the above lineris=<x— X,y —y>> /|x— X|?. Of special
importance is theorrelation coefficient

- <<X_)_(7y_y>>
") = T Ry =]

This measures how closely the data poi(tg, y;) fit the straight line. The Schwarz in-
equality asserts that (x,y)| < 1. If r(x,y) = +1 the data lieexactlyalong a straight line
with positive slope, while ifr(x,y) = —1 the data lies along a straight line with negative
slope. Ifr(x,y) = 0 the data forms a cloud and does not really seem to lie alongteaight
line. In this case there is no correlation betweenxtandy data vectors.

Example You are presented with a table with the heights and weights péople. Since
taller people generally (but not always) weigh more thantgingeople, we anticipate that
there should be some correlation between the heights arghtsesf people. Tables with
real data confirms this. The calculation of the correlatioefficient is routine.

Example Say you have a table of data. The first column, the veéter(vy, ...,vy), is the
number of hours each student studied for an exam, the sectunaie, W = (wy, ..., W),
is the list of corresponding grades on the exan<4,0, B = 3.0, etc.). To compute with
data effectively, we should normalize by subtracting therages/ = (v1 +---+Vvp)/n and
w= (wy+---+Wy)/n) to get the normalized data vectors

Vhorm:= (V1 —V, ...,Vh — V), Whorm := (W1 — W, ..., Wn — W)

(we could further normalize to make both of these to be urstors, but the definition of
the correlation coefficient does this for us).

In this example we roughly anticipate there will be a cotielabetween the number of
hours a student studies and the course grade, so from spmiatdi@ correlation coefficient
r(v,w) = 0.8 would not be surprising. [With real data, a correlationffioent r (x,y) = £1

is inconceivable because real data never exactly fits abtrimne.]

Example This time there is a trial of the effectiveness of a new mdahoa There aren
people, all of whom have a certain disease. Some are givarethielrug, some a placebo.
The corresponding data vectdr= (v1,...,vn) with a component being either 1 (patient
is given the test drug), or O (patient is given a placebo).
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After several months the medication is evaluated resuitirglata vectoW = (wy, ..., Wy)
where—1 < wj <1 is determined using the following guidelines

+1 ifthe j'" patient has been cured
wWj = 0 ifthe j'" patient is essentially unchanged
—1 ifthe jth patient has died

After normalizing the data vectors, you compute the cotiahecoefficientr .

If r =+40.8, you believe the drug was somewhat effective and eithentese intensively
or attempt to improve it — or really begin using it.

If r =—0.2, You conclude the drug was either ineffective — or posdikist the patient.
If r =—0.7, you conclude the drug was harmful and stop using it imnieljia

See most statistics books for a more adequate discussiog aith useful examples.

More General Examples

The method of least squares can be used in a variety of siigatither than just seeking
a straight line that fits data. For instance, it can be usechth for instance, the cubic
polynomialy = a+bx+ cx? +dx3 that best fits some data, or the plane a+ bx+ cy that
best fits given data. The technique of least squares is widsgyg in all area where one has
experimental data. The key feature is that the equatioriméar in the unknown coeffi-
cientsa, b, etc. However, even if the equations are not linear in thenank coefficients
a, b, etc., frequently one can find an equivalent problem to withehtechniques apply.
The following example illustrates this.

Example Say we are givem experimental data pointxi, y1), (X2, ¥2), ..., (Xn, Yn) and
seek an exponential curye= ae®™ that best fits this data. Ideally we want to pick the
coefficientsa andb so that

aeb M = Y1
a2 =y,
aé)Xn — yn.

These aren equations for the two unknowrss b. However, they are nonlinear imso the
method of least squares does not directly apply. To get arthis we take the (natural)
logarithm of each of these equations and obtain

oa+bxy= Inyp
a+bx= Inys

o—+bx,= Inyp,

14



wherea = Ina. These modified equations diaear in the unknownsa and b, so we
can apply the method of least squares. After we krmowwve can recovea simply from
a=¢€".

REMARK. Say one wants to fit data to the related cuyve aé’*+c. | don’t know any
way to do this using least squares, where one eventuallgsallinear system of equations
(the normal equations). For this problem it seems that on&t sulve anonlinearsystem
of equations, which is much more difficult.

Example This is similar to the previous example. Say we are gimeexperimental data

points (X1, Y1), (X2,¥2), ..., (Xn, Yn) @and seek a curve of the form= % that best
fits this data. ldeally we want to pick the coefficieatgndb so that
axy .
1—{-bX% = Y
ax
1+bx y2
g
T+bg

These aren equations for the two unknowres b. However, they are nonlinear imso the
method of least squares does not apply directly. To get arthis we rewrite the curve
asy(1+bx?) = ax, that is, ax— bx?y = y. This equation is novinear in the unknown
coefficientsa andb. We want to pick these to solve the equations

axy — b>€)’1 = Y
ax—bxgy2 =y
axe — Xy = n.

with the least error. These are linear equations of the fAvha= W, where the data matrix
is

X1 —Xey1
2

Xo —X

Xn _X%yb

S0 we solve the normal equatioASAV = A*W as before.

Problems Using Least Squares

15



1. Use the Method of Least Squares to find the straightyireax+ b that best fits the
following data given by the following four point&;,y;), j =1,...,4:

(—2,4), (—-1,3), (0,1), (2,0).

Ideally, you'd like to pick the coefficienta andb so that the four equatiorex; +b =
Yj, ] =1,...,4 are all satisfied. Since this probably can’t be done, one lesest
squares to find the best possilsleandb.

2. Find a curve of the forny = a+ bx+cx? that best fits the following data

X|-2|-1| 0 1,23 4
y|4]11/-05/1.0|43|81|17.5

3. Find a plane of the forma = ax+ by+ c that best fits the following data

11/2]-01|3]|22

4. The water level in the North Sea is mainly determined bysthiealled M2 tide, whose
period is about 12 hours. The heigH(t) thus roughly has the form

H(t) = c+asin(2rt/12) + bcog2mt/12),

where timet is measured in hours (note §2mt /12 and co&rt/12) are periodic with
period 12 hours). Say one has the following measurements:

t (hours) 0| 246|810
H(t) (meters) 1.0/ 1.6|1.4|0.6|0.2|0.8

Use the method of least squares with these measurementsl tindirtonstants, b,
andc in H(t) for this data.
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5. a). Some experimental data, ;) is believed to fit a curve of the form
_1+x

where the parameters and b are to be determined from the data. The method of
least squares does not apply directly to this since the peteasa andb do not appear
linearly. Show how to find a modified equation to which the roetlof least squares
does apply.

b). Repeat part a) for the curye=

a+bx’

c). Repeat part a) for the curye=

a+bx’

d). Repeat part a) for the curye= axX°.

e). Repeat part a) for tHegistic curve y= Here the constarit is assumed

1+ eabx’
to be known. [If b> 0, theny converges td. asx increases. Thus the value bfcan often

be estimated simply by eye-balling a plot of the data for latde

f). Repeat part a) for the curwe=1— e’

a-+ mx _ .
g) Repeat part a) for the curwe= b+ assuming the constamt is known. [One

might find m from the data sincg tends tom for x large.]

h). Repeat part a) for the curye= T bsinx

6. The comet Tentax, discovered only in 1968, moves withengtblar system. The fol-
lowing are observations of its positigin, 8) in a polar coordinate system with center
at the sun:

r 2700 2.00| 1.61| 1.20| 1.02
S 48 | 67 | 83 | 108 | 126

(hereB is an angle measured in degrees).

By Kepler’s first law the comet should move in a plane orbit whekape is either an
ellipse, hyperbola, or parabola (this assumes the greonitinfluence of the planets
is neglected). Thus the polar coordinate®) satisfy

S
1—ecosd
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where p and the eccentricitg are parameters describing the orbit. Use the data to es-
timate p and e by the method of least squares. Hint: Make some (simplejnpirghry
manipulation so the parametgosande appeatinearly; then apply the method of least
squares.

. Plotting graphsThis problem concerns the straight line in the plane thadgshrough
the two points(4,0) and (0,2) (draw a sketch). This will be useful for the next prob-
lem.

a) If the horizontal axis ix and the vertical axiy, what is the equation foy as a
function of x?

b) If the horizontal axis is log and the vertical axiy, what is the equation foy as
a function ofx?

c) If the horizontal axis i and the vertical axis log, what is the equation foy as
a function ofx?

d) If the horizontal axis is log and the vertical axis log, what is the equation foy
as a function ok ?

. For each of the seven closest planets, Kepler, using aateBruno, knew the distance
r from the planet to the sun (in million km)and the tinieit takes to orbit the sun (the
length in earth days of a year on that planet).

Mercury | Venus| Earth | Mars | Jupiter| Saturn| Uranus
r 60 110 | 150 | 230 | 780 | 1430 | 2870
T 90 225 | 365 | 690 | 4330 | 10750| 30650

Kepler sought a formula relating and T. It took him a long time; he did not have
logarithms. Guided by the idea of using graphs as in the pusvproblem, you can do
this fairly easily.

Make four experimental graphs of this data (as in the presqwablem just above). The
goal is to hope one of these four curves looks roughly likeraigitt line. If it does,
then use least squares to find the “best” straight line — agdl tie desired formula for
the relation between andT.

[Since the data is only approximate and since we anticipdgnaple” answer, you
may find it appropriate to use your numerical results to leadtp a simpler formula.]
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9.

10.

Let A: R" — RX be a linear map. IAA is not one-to-one, but the equatidx =y has
some solution, then it has many. Is there a “best” possitdevar? What can one say?
Think about this before reading the next paragraph.

If there is some solution oAx =y, show there is exactly one solutioa of the form
x1 = A*w for somew, so AA*'w =y. Moreover of all the solutiong of Ax=y, show
thatx; is closest to the origin (in the Euclidean distance)E{RRRK: This situation is

related to the case where whekas not onto, so there may not be a solution — but the

method of least squares gives an “best” approximation tdudisn.]

LetPy, Ps,..., B bek points (think of them adata) in R2 and letS be the plane
S:={XeR®: (X,N)=c},

whereN = 0 is a unit vector normal to the plane ands a real constant.

This problem outlines how to find the plane tlest approximates the data poirits
the sense that it minimizes the function

k
Z distancéP;, )

Determining this plane means findifgyandc.
a) Show that for a given poirRe, then

distancéP,S) = |(P— X, N)| = [(P.N) —c],

whereX is any pointinS

b) First do the special case where the center of rﬁ’ass% zlj(:l Pj is at the origin, so

P =0. Show that for anyP, then(P, N)2 = (N, PP*N). Here viewP as a column
vector soPP* is a 3x 3 matrix.

Use this to observe that the desired plafigs determined by lettingN be an
eigenvector of the matrix

k
o pT
A= Z PP
=1
corresponding to it's lowest eigenvalue. Whatis this case?
c) Reduce the general case to the previous case by |&tfirgP; —

d) Find the equation of the linex+ by = c that, in the above sense, best fits the data

points (—1,3), (0,1), (1,-1), (2,-3).
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e) LetPj:=(pj1,...,Pj3), j =1,...,k be the coordinates of thg" data point and
Z = (Puw,.--,Pe), £ =1,...,3 be the vector of™" coordinates. Ifeyj is thei]j
element ofA, show thata;j = (Z;, Zj). Note that this exhibit®\ as aGram matrix

f) Generalize to wher®y, P»,..., B arek points inR".
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