Math 260 Feb. 9, 2012

Exam 1

DIRECTIONS This exam has 10 questions (10 points each). Closed book, no calculators or computers– but you may use one $3'' \times 5''$ card with notes on both sides. *Neatness counts*.

- 1. Which of the following sets are linear spaces?
 - a) The points $X = (x_1, x_2, x_3)$ in \mathbb{R}^3 with the property $x_1 2x_3 = 0$.
 - b) The set of solutions x of Ax = 0, where A is an $m \times n$ matrix.
 - c) The set of polynomials p(x) with $\int_{-1}^{1} p(x) \cos 2x \, dx = 0$.
 - d) The set of solutions y = y(t) of $y'' + 4y' + y = x^2 3$. [NOTE: You are *not* being asked to solve this differential equation. You are only being asked a more primitive question.]
- 2. Let S and T be linear spaces and $L: S \to T$ be a linear map. Say V_1 and V_2 are (distinct!) solutions of the equations $LX = Y_1$ while W is a solution of $LX = Y_2$. Answer the following in terms of V_1 , V_2 , and W.
 - a) Find some solution of $LX = 2Y_1 3Y_2$.
 - b) Find another solution (other than W) of $LX = Y_2$.
- 3. Say you have k linear algebraic equations in n variables; in matrix form we write AX = Y. Give a proof or counterexample for each of the following.
 - a) If n = k there is always at most one solution.
 - b) If n > k, given any Y you can always solve AX = Y.
 - c) If n > k the nullspace of A has dimension greater than zero.
 - d) If n < k then for some Y there is no solution of AX = Y.
 - e) If n < k the only solution of AX = 0 is X = 0.
- 4. Find a real 2×2 matrix A such that $A^4 = I$ but $A^2 \neq I$.
- 5. Find a quadratic polynomial p(x) that passes through the three points (-1, 0), (0, -1), and (2, 3). [Don't bother to "simplify" your answer.]
- 6. Let $A : \mathbb{R}^3 \to \mathbb{R}^2$ and $B : \mathbb{R}^2 \to \mathbb{R}^3$ be given matrices, and let $C := BA : \mathbb{R}^3 \to \mathbb{R}^3$. Show that C cannot be invertible.
- 7. In \mathbb{R}^3 , find the distance from the point P := (1, 1, 0) to the plane x + 2y z = 0.

- 8. Let U, and V, W be (non-zero) orthogonal vectors and let Z = aU + bV, where a and b are scalars.
 - a) (Pythagoras) Show that $||Z||^2 = a^2 ||U||^2 + b^2 ||V||^2$.
 - b) Find a formula for the coefficient a in terms of U and Z only.
- 9. Let $g(x) = \begin{cases} 0 & \text{for } -\pi \le x < 0, \\ 1 & \text{for } 0 \le x < \pi \end{cases}$, and extend g(x) for all real x so that it is periodic with period 2π . If its Fourier series is $g(x) = \sum_{k=-\infty}^{\infty} c_k \frac{e^{ikx}}{\sqrt{2\pi}}$, find the coefficients c_0 and c_{-2} .
- 10. A particular solution of $u'' + 4u = 2x^2$ is $u_p = \frac{1}{2}x^2 \frac{1}{4}$. Find a solution that satisfies the initial conditions u(0) = 0 and u'(0) = 0.