Directions This exam has 10 questions (10 points each). Closed book, no calculators or computers- but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides. Neatness counts.

1. Which of the following sets are linear spaces?
a) The points $X=\left(x_{1}, x_{2}, x_{3}\right)$ in \mathbb{R}^{3} with the property $x_{1}-2 x_{3}=0$.
b) The set of solutions x of $A x=0$, where A is an $m \times n$ matrix.
c) The set of polynomials $p(x)$ with $\int_{-1}^{1} p(x) \cos 2 x d x=0$.
d) The set of solutions $y=y(t)$ of $y^{\prime \prime}+4 y^{\prime}+y=x^{2}-3$. [Note: You are not being asked to solve this differential equation. You are only being asked a more primitive question.]
2. Let S and T be linear spaces and $L: S \rightarrow T$ be a linear map. Say V_{1} and V_{2} are (distinct!) solutions of the equations $L X=Y_{1}$ while W is a solution of $L X=Y_{2}$. Answer the following in terms of V_{1}, V_{2}, and W.
a) Find some solution of $L X=2 Y_{1}-3 Y_{2}$.
b) Find another solution (other than W) of $L X=Y_{2}$.
3. Say you have k linear algebraic equations in n variables; in matrix form we write $A X=Y$. Give a proof or counterexample for each of the following.
a) If $n=k$ there is always at most one solution.
b) If $n>k$, given any Y you can always solve $A X=Y$.
c) If $n>k$ the nullspace of A has dimension greater than zero.
d) If $n<k$ then for some Y there is no solution of $A X=Y$.
e) If $n<k$ the only solution of $A X=0$ is $X=0$.
4. Find a real 2×2 matrix A such that $A^{4}=I$ but $A^{2} \neq I$.
5. Find a quadratic polynomial $p(x)$ that passes through the three points $(-1,0),(0,-1)$, and $(2,3)$. [Don't bother to "simplify" your answer.]
6. Let $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ and $B: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given matrices, and let $C:=B A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. Show that C cannot be invertible.
7. In \mathbb{R}^{3}, find the distance from the point $P:=(1,1,0)$ to the plane $x+2 y-z=0$.
8. Let U, and V, W be (non-zero) orthogonal vectors and let $Z=a U+b V$, where a and b are scalars.
a) (Pythagoras) Show that $\|Z\|^{2}=a^{2}\|U\|^{2}+b^{2}\|V\|^{2}$.
b) Find a formula for the coefficient a in terms of U and Z only.
9. Let $g(x)=\left\{\begin{array}{ll}0 & \text { for }-\pi \leq x<0, \\ 1 & \text { for } 0 \leq x<\pi\end{array}\right.$, and extend $g(x)$ for all real x so that it is periodic with period 2π. If its Fourier series is $g(x)=\sum_{k=-\infty}^{\infty} c_{k} \frac{e^{i k x}}{\sqrt{2 \pi}}$, find the coefficients c_{0} and c_{-2}.
10. A particular solution of $u "+4 u=2 x^{2}$ is $u_{p}=\frac{1}{2} x^{2}-\frac{1}{4}$. Find a solution that satisfies the initial conditions $u(0)=0$ and $u^{\prime}(0)=0$.
