Directions This exam has 10 questions (10 points each). Closed book, no calculators or computers- but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides. Neatness counts.

1. Which of the following sets are linear spaces?
a) The points $X=\left(x_{1}, x_{2}, x_{3}\right)$ in \mathbb{R}^{3} with the property $x_{1}-2 x_{3}=0$. Solution: Yes - obviously.
b) The set of solutions x of $A x=0$, where A is an $m \times n$ matrix.

Solution: Yes - obviously.
c) The set of polynomials $p(x)$ with $\int_{-1}^{1} p(x) \cos 2 x d x=0$.

Solution: Yes - obviously.
d) The set of solutions $y=y(t)$ of $y^{\prime \prime}+4 y^{\prime}+y=x^{2}-3$. [Note: You are not being asked to solve this differential equation. You are only being asked a more primitive question.]

Solution: No. The function $y(x) \equiv 0$ does not satisfy this equation.
2. Let S and T be linear spaces and $L: S \rightarrow T$ be a linear map. Say V_{1} and V_{2} are (distinct!) solutions of the equations $L X=Y_{1}$ while W is a solution of $L X=Y_{2}$. Answer the following in terms of V_{1}, V_{2}, and W.
a) Find some solution of $L X=2 Y_{1}-3 Y_{2}$.

Solution: For instance $X:=2 V_{1}-3 W$
b) Find another solution (other than W) of $L X=Y_{2}$.

Solution: For instance $X:=V_{2}-V_{1}+W$.
3. Say you have k linear algebraic equations in n variables; in matrix form we write $A X=Y$. Give a proof or counterexample for each of the following.
a) If $n=k$ there is always at most one solution.

Solution: Counterexample: $A=0$ matrix.
b) If $n>k$, given any Y you can always solve $A X=Y$.

Solution: Counterexample: A is the zero matrix.
c) If $n>k$ the nullspace of A has dimension greater than zero.

Solution: Yes, by the Rank Theorem: $\operatorname{dim} \mathcal{N}(A)=n-\operatorname{dim} \mathcal{I}(A) \geq n-k \geq 1$
d) If $n<k$ then for some Y there is no solution of $A X=Y$.

Solution: Yes, by the Rank Theorem: $k>n=\operatorname{dim} \mathcal{I}(A)+\operatorname{dim} \mathcal{N}(A) \geq \operatorname{dim} \mathcal{I}(A)$. Thus the dimension of the image of A is less than k.
e) If $n<k$ the only solution of $A X=0$ is $X=0$.

Solution: Counterexample: let A be the zero matrix.
4. Find a real 2×2 matrix A such that $A^{4}=I$ but $A^{2} \neq I$.

Solution: For instance, A is a rotation by $\pi / 2$ (90 degrees): $A:=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.
5. Find a quadratic polynomial $p(x)$ that passes through the three points $(-1,0),(0,-1)$, and $(2,3)$. [Don't bother to "simplify" your answer.]

Solution: This is simple enough that the computation is fairly easy using many different bases for the space of quadratic polynomials. I'll use a Lagrange basis:

$$
p_{1}(x):=\frac{x(x-2)}{-1(-1-2)} ; \quad p_{2}(x):=\frac{(x+1)(x-2)}{1(0-2)} ; \quad p_{3}(x):=\frac{(x+1) x}{(2+1) 2} .
$$

Then

$$
p(x)=0 p_{1}(x)+(-1) p_{2}(x)+3 p_{3}(x)=\frac{(x+1)(x-2)}{2}+3 \frac{(x+1) x}{6}=x^{2}-1
$$

6. Let $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ and $B: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given matrices, and let $C:=B A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. Show that C cannot be invertible.

Solution: Any proof that begins with $C^{-1}=A^{-1} B^{-1}$ is almost certainly nonsense since this presumes A and B are invertible. But if a matrix is invertible, it must be square (why?), and neither A nor B are square. Note that $D:=A B: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ can be invertible (Simple Example?).

Here is a solution. If C is invertible, it must be one-to-one. But A can't be one-to-one (why?) and anything in the nullspce of A is also in then nullspace of C.

Another solution. If C is invertible, it must be onto. But B can't be onto (why?) and anything in the image of C must also be in then image of B.
7. In \mathbb{R}^{3}, find the distance from the point $P:=(1,1,0)$ to the plane $x+2 y-z=0$.

Solution: There are several approaches. One begins with the observation that the vector $N:=(1,2,-1)$ is orthogonal to this plane because if $V:=(x, y, z)$ is in this plane then $\langle V, N\rangle=0$. Think of P as a vector from the origin (which is in the plane) to the point P. From a sketch, it is clear that the distance from P to this plane is $\|P\| \cos \theta$, where θ is the angle between the vectors P and N. But $\langle P, N\rangle=\|P\|\|N\| \cos \theta$. Thus

$$
\text { Distance }=\frac{\langle P, N\rangle}{\|N\|}=\frac{3}{\sqrt{6}}
$$

Since we might have used $-N$ for the normal to the plane, to find the distance, if needed we should insert the absolute value in the final step.
8. Let U, and V be (non-zero) orthogonal vectors and let $Z=a U+b V$, where a and b are scalars.
a) (Pythagoras) Show that $\|Z\|^{2}=a^{2}\|U\|^{2}+b^{2}\|V\|^{2}$.

Solution:

$$
\begin{aligned}
\|Z\|^{2} & =\|a U+b V\|^{2}=\langle a U+b V, a U+b V\rangle \\
& =\langle a U, a U\rangle+\langle a U, b V\rangle+\langle b V, a U\rangle+\langle b V, b V\rangle \\
& =a^{2}\|U\|^{2}+b^{2}\|V\|^{2},
\end{aligned}
$$

where we used the orthogonality of U and V.
b) Find a formula for the coefficient a in terms of U and Z only.

Solution: Take the inner product of both sides of $Z=a U+b V$ with U and use the orthogonality of U and V :

$$
\langle Z, U\rangle=\langle a U+b V, U\rangle=a\|U\|^{2} \quad \text { so } \quad a=\frac{\langle Z, U\rangle}{\|U\|^{2}}
$$

9. Let $g(x)=\left\{\begin{array}{ll}0 & \text { for }-\pi \leq x<0, \\ 1 & \text { for } 0 \leq x<\pi\end{array}\right.$, and extend $g(x)$ for all real x so that it is periodic with period 2π. If its Fourier series is $g(x)=\sum_{k=-\infty}^{\infty} c_{k} \frac{e^{i k x}}{\sqrt{2 \pi}}$, find the coefficients c_{0} and c_{-2}.

Solution: We use the basic formula

$$
c_{k}=\left\langle g, \frac{e^{i k x}}{\sqrt{2 \pi}}\right\rangle=\int_{-\pi}^{\pi} g(x) \frac{e^{-i k x}}{\sqrt{2 \pi}} d x=\frac{1}{\sqrt{2 \pi}} \int_{0}^{\pi} e^{-i k x} d x
$$

Thus,

$$
c_{0}=\frac{\pi}{\sqrt{2 \pi}}=\sqrt{\frac{\pi}{2}} \quad \text { and } \quad c_{-2}=\frac{1}{\sqrt{2 \pi}} \int_{0}^{\pi} e^{2 i x} d x=\frac{1}{2 i \sqrt{2 \pi}}\left[e^{2 i \pi}-1\right]=0 .
$$

10. A particular solution of $u "+4 u=2 x^{2}$ is $u_{p}=\frac{1}{2} x^{2}-\frac{1}{4}$. Find a solution that satisfies the initial conditions $u(0)=0$ and $u^{\prime}(0)=0$.

Solution: We first find the general solution, u_{h}, of the homogeneous equation. Seeking a solution in the form $e^{\lambda x}$ we find $\lambda^{2}+4=0$ so $\lambda= \pm 2 i$. Thus $u_{h}(x)=A e^{2 i x}+B e^{-2 i x}$ or, in the equivalent real form, $u_{h}(x)=C \cos 2 x+D \sin 2 x$, where A, B, C, and D can be any constants. We'll use the real form. The general solution of the inhomogeneous equation is

$$
u(x)=C \cos 2 x+D \sin 2 x+\frac{1}{2} x^{2}-\frac{1}{4} .
$$

It remains to pick C and D to match the initial conditions:

$$
0=u(0)=C-\frac{1}{4}, \quad \text { and } \quad 0=u^{\prime}(0)=2 D
$$

Thus $u(x)=\frac{1}{4} \cos 2 x+\frac{1}{2} x^{2}-\frac{1}{4}$.

