
Math 260 Exam 1 Jerry L. Kazdan
Feb. 9, 2012 12:00 – 1:20

Directions This exam has 10 questions (10 points each). Closed book, no calculators or
computers– but you may use one 3′′ × 5′′ card with notes on both sides. Neatness counts.

1. Which of the following sets are linear spaces?

a) The points X = (x1, x2, x3) in R3 with the property x1 − 2x3 = 0.

Solution: Yes – obviously.

b) The set of solutions x of Ax = 0, where A is an m× n matrix.

Solution: Yes – obviously.

c) The set of polynomials p(x) with
∫ 1
−1 p(x) cos 2x dx = 0.

Solution: Yes – obviously.

d) The set of solutions y = y(t) of y′′ + 4y′ + y = x2 − 3. [Note: You are not being asked
to solve this differential equation. You are only being asked a more primitive question.]

Solution: No. The function y(x) ≡ 0 does not satisfy this equation.

2. Let S and T be linear spaces and L : S → T be a linear map. Say V1 and V2 are (distinct!)
solutions of the equations LX = Y1 while W is a solution of LX = Y2 . Answer the following
in terms of V1 , V2 , and W .

a) Find some solution of LX = 2Y1 − 3Y2 .

Solution: For instance X := 2V1 − 3W

b) Find another solution (other than W ) of LX = Y2 .

Solution: For instance X := V2 − V1 + W .

3. Say you have k linear algebraic equations in n variables; in matrix form we write AX = Y .
Give a proof or counterexample for each of the following.

a) If n = k there is always at most one solution.

Solution: Counterexample: A = 0 matrix.

b) If n > k , given any Y you can always solve AX = Y .

Solution: Counterexample: A is the zero matrix.

c) If n > k the nullspace of A has dimension greater than zero.

Solution: Yes, by the Rank Theorem: dimN (A) = n− dim I(A) ≥ n− k ≥ 1

d) If n < k then for some Y there is no solution of AX = Y .

Solution: Yes, by the Rank Theorem: k > n = dim I(A)+dimN (A) ≥ dim I(A). Thus
the dimension of the image of A is less than k .

e) If n < k the only solution of AX = 0 is X = 0.

Solution: Counterexample: let A be the zero matrix.
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4. Find a real 2× 2 matrix A such that A4 = I but A2 6= I .

Solution: For instance, A is a rotation by π/2 (90 degrees): A :=
(

0 −1
1 0

)
.

5. Find a quadratic polynomial p(x) that passes through the three points (−1, 0), (0, −1), and
(2, 3). [Don’t bother to “simplify” your answer.]

Solution: This is simple enough that the computation is fairly easy using many different
bases for the space of quadratic polynomials. I’ll use a Lagrange basis:

p1(x) :=
x(x− 2)

−1(−1− 2)
; p2(x) :=

(x + 1)(x− 2)
1(0− 2)

; p3(x) :=
(x + 1)x
(2 + 1)2

.

Then

p(x) = 0p1(x) + (−1)p2(x) + 3p3(x) =
(x + 1)(x− 2)

2
+ 3

(x + 1)x
6

= x2 − 1.

6. Let A : R3 → R2 and B : R2 → R3 be given matrices, and let C := BA : R3 → R3 . Show that
C cannot be invertible.

Solution: Any proof that begins with C−1 = A−1B−1 is almost certainly nonsense since this
presumes A and B are invertible. But if a matrix is invertible, it must be square (why?),
and neither A nor B are square. Note that D := AB : R2 → R2 can be invertible (Simple
Example?).

Here is a solution. If C is invertible, it must be one-to-one. But A can’t be one-to-one (why?)
and anything in the nullspce of A is also in then nullspace of C .

Another solution. If C is invertible, it must be onto. But B can’t be onto (why?) and anything
in the image of C must also be in then image of B .

7. In R3 , find the distance from the point P := (1, 1, 0) to the plane x + 2y − z = 0.

Solution: There are several approaches. One begins with the observation that the vector
N := (1, 2,−1) is orthogonal to this plane because if V := (x, y, z) is in this plane then
〈V, N〉 = 0. Think of P as a vector from the origin (which is in the plane) to the point P .
From a sketch, it is clear that the distance from P to this plane is ‖P‖ cos θ , where θ is the
angle between the vectors P and N . But 〈P, N〉 = ‖P‖‖N‖ cos θ . Thus

Distance =
〈P, N〉
‖N‖

=
3√
6

Since we might have used −N for the normal to the plane, to find the distance, if needed we
should insert the absolute value in the final step.

2



8. Let U , and V be (non-zero) orthogonal vectors and let Z = aU + bV , where a and b are
scalars.

a) (Pythagoras) Show that ‖Z‖2 = a2‖U‖2 + b2‖V ‖2 .

Solution: ‖Z‖2 =‖aU + bV ‖2 = 〈aU + bV, aU + bV 〉
=〈aU, aU〉+ 〈aU, bV 〉+ 〈bV, aU〉+ 〈bV, bV 〉
=a2‖U‖2 + b2‖V ‖2,

where we used the orthogonality of U and V .
b) Find a formula for the coefficient a in terms of U and Z only.

Solution: Take the inner product of both sides of Z = aU + bV with U and use the
orthogonality of U and V :

〈Z, U〉 = 〈aU + bV, U〉 = a‖U‖2 so a =
〈Z, U〉
‖U‖2

.

9. Let g(x) =

{
0 for −π ≤ x < 0,

1 for 0 ≤ x < π
, and extend g(x) for all real x so that it is periodic with

period 2π . If its Fourier series is g(x) =
∑∞

k=−∞ ck
eikx
√

2π
, find the coefficients c0 and c−2 .

Solution: We use the basic formula

ck = 〈g,
eikx

√
2π
〉 =

∫ π

−π
g(x)

e−ikx

√
2π

dx =
1√
2π

∫ π

0
e−ikx dx

Thus,

c0 =
π√
2π

=
√

π

2
and c−2 =

1√
2π

∫ π

0
e2ix dx =

1
2i
√

2π
[e2iπ − 1] = 0.

10. A particular solution of u” + 4u = 2x2 is up = 1
2x2 − 1

4 . Find a solution that satisfies the
initial conditions u(0) = 0 and u′(0) = 0.

Solution: We first find the general solution, uh , of the homogeneous equation. Seeking a
solution in the form eλx we find λ2 + 4 = 0 so λ = ±2i . Thus uh(x) = Ae2ix + Be−2ix or,
in the equivalent real form, uh(x) = C cos 2x + D sin 2x , where A , B , C , and D can be any
constants. We’ll use the real form. The general solution of the inhomogeneous equation is

u(x) = C cos 2x + D sin 2x +
1
2
x2 − 1

4
.

It remains to pick C and D to match the initial conditions:

0 = u(0) = C − 1
4
, and 0 = u′(0) = 2D.

Thus u(x) = 1
4 cos 2x + 1

2x2 − 1
4 .
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