Math 260 Exam 1 Jerry L. Kazdan
Feb. 9, 2012 12:00 — 1:20

DIRECTIONS This exam has 10 questions (10 points each). Closed book, no calculators or
computers— but you may use one 3” x 5” card with notes on both sides. Neatness counts.

1. Which of the following sets are linear spaces?
a) The points X = (z1,22,73) in R? with the property z; — 223 = 0.
SOLUTION: Yes — obviously.
b) The set of solutions = of Az =0, where A is an m X n matrix.
SOLUTION: Yes — obviously.
c) The set of polynomials p(z) with f_llp(x) cos2zxdr = 0.
SOLUTION: Yes — obviously.

d) The set of solutions y = y(t) of y" + 4y +y = 22 — 3. [NOTE: You are not being asked
to solve this differential equation. You are only being asked a more primitive question.]

SoLUTION: No. The function y(x) = 0 does not satisfy this equation.

2. Let S and T be linear spaces and L : S — T be a linear map. Say V; and V5 are (distinct!)
solutions of the equations LX = Y; while W is a solution of LX = Y5. Answer the following
in terms of Vq, Vo, and W.

a) Find some solution of LX = 2Y; — 3Y;.
SoLuTION: For instance X := 2V; — 3W

b) Find another solution (other than W) of LX = Y5.
SoLuTION: For instance X =V, — V] +W.

3. Say you have k linear algebraic equations in n variables; in matrix form we write AX =Y.
Give a proof or counterexample for each of the following.

a) If n =k there is always at most one solution.
SOLUTION: Counterexample: A = 0 matrix.
b) If n >k, given any Y you can always solve AX =Y.
SOLUTION: Counterexample: A is the zero matrix.
¢) If n > k the nullspace of A has dimension greater than zero.
SOLUTION: Yes, by the Rank Theorem: dimN(A) =n —dimZ(A)>n—k>1
d) If n < k then for some Y there is no solution of AX =Y.

SOLUTION: Yes, by the Rank Theorem: k > n = dimZ(A) +dim N (A) > dimZ(A). Thus
the dimension of the image of A is less than k.

e) If n <k the only solution of AX =0is X =0.

SoLUTION: Counterexample: let A be the zero matrix.



4. Find a real 2 x 2 matrix A such that A* =1 but A% #1.

SoLuTION: For instance, A is a rotation by 7/2 (90 degrees): A := ({

1
0)-
5. Find a quadratic polynomial p(x) that passes through the three points (-1, 0), (0, —1), and

(2, 3). [Don’t bother to “simplify” your answer.]

SoLuTION: This is simple enough that the computation is fairly easy using many different
bases for the space of quadratic polynomials. I’ll use a Lagrange basis:

z(x—-2) (r+1)(x—-2) (x4 Dz
pi(x) = ma p2(z) = w, p3(x) = m
Then
p(x) = Opa(a) + (~Dpa(e) + 3ps(e) = TH L= g0 DT oy

6. Let A:R?> — R? and B :R?> — R3? be given matrices, and let C':= BA : R? — R3. Show that
C cannot be invertible.

SOLUTION: Any proof that begins with C~' = A~'B~! is almost certainly nonsense since this
presumes A and B are invertible. But if a matrix is invertible, it must be square (why?),
and neither A nor B are square. Note that D := AB : R?> — R? can be invertible (Simple
Example?).

Here is a solution. If C is invertible, it must be one-to-one. But A can’t be one-to-one (why?)
and anything in the nullspce of A is also in then nullspace of C'.

Another solution. If C' is invertible, it must be onto. But B can’t be onto (why?) and anything
in the image of C' must also be in then image of B.

7. In R3, find the distance from the point P := (1,1,0) to the plane = +2y — z = 0.

SOLUTION: There are several approaches. One begins with the observation that the vector
N := (1,2,—1) is orthogonal to this plane because if V := (z,y,2) is in this plane then
(V, N) = 0. Think of P as a vector from the origin (which is in the plane) to the point P.
From a sketch, it is clear that the distance from P to this plane is ||P| cos@, where 6 is the
angle between the vectors P and N. But (P, N) = || P||||N]| cos@. Thus

(P,N) 3

IVl V6

Since we might have used —N for the normal to the plane, to find the distance, if needed we
should insert the absolute value in the final step.

Distance =



8.

10.

Let U, and V be (non-zero) orthogonal vectors and let Z = aU + bV, where a and b are
scalars.

a) (Pythagoras) Show that ||Z|? = a?|U||? + b*|V|?.

—(aU, aU) + (aU, bV) + (bV, aU) + (bV, bV)
=a?|U|1> + 0*| V|,

where we used the orthogonality of U and V.

b) Find a formula for the coefficient a in terms of U and Z only.
SOLUTION: Take the inner product of both sides of Z = aU 4+ bV with U and use the
orthogonality of U and V':

(Z,U)

1oz

(Z,U) = (aU + bV, U) =a|U|® so a=

0 for —m<z<0,

, and extend g(z) for all real x so that it is periodic with
1 for 0<axz<m

Let g(x) = {

period 27. If its Fourier series is g(z) = Y oo ¢k cike

Nk find the coefficients ¢y and c_so.

SOLUTION: We use the basic formula

o < e’Lk(E > _ /71’ (x) efzkx e — 1 /7r e—ika: e
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Thus,
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A particular solution of u” + 4u = 222 is Uy = %x Find a solution that satisfies the

initial conditions «(0) = 0 and «'(0) = 0.

1
1

SoLuTION: We first find the general solution, uy, of the homogeneous equation. Seeking a
solution in the form e* we find A2 +4 = 0 so A = 4+2i. Thus up(z) = Ae?* + Be™2%% or,
in the equivalent real form, wup(x) = C cos 2z + Dsin 2z, where A, B, C, and D can be any
constants. We’ll use the real form. The general solution of the inhomogeneous equation is

1 1
u(z) = C cos 2z + Dsin 2z + 5952 - -

4
It remains to pick C' and D to match the initial conditions:
1
0=u(0)=C - T and  0=4/(0)=2D.

Thus u(z) = 1cos2z + 12?2 — 1.



