Directions This exam has two parts. Part A has 6 short answer questions (7 points each, so 42 points) whilePart B has 4 traditional problems (15 points each, so 60 points). Total: 102 points. Neatness counts.
Closed book, no calculators, computers, ipods, cell phomes, etc - but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides.

PART A: six short answer questions (7 points each, so 42 points).

1. Find a 3×3 symmetric matrix A with the property that

$$
\langle X, A X\rangle=-x_{1}^{2}+6 x_{1} x_{2}-x_{1} x_{3}+2 x_{2} x_{3}+3 x_{2}^{2}
$$

for all $X=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$.
2. Under what conditions on the constants a, b, c, and d is the following matrix A positive definite?

$$
A:=\left(\begin{array}{llll}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & d
\end{array}\right)
$$

3. Let B be an anti-symmetric $n \times n$ real matrix, so $B^{*}=-B$. Show that $\langle V, B V\rangle=0$ for all $V \in \mathbb{R}^{n}$.
4. Find the arc length of the segment of the helix $X(t):=(\cos 3 t, 1-4 t, \sin 3 t)$, for $0 \leq t \leq \pi$.
5. Find some function $u(x, y)$ that satisfies $\frac{\partial^{2} u}{\partial x \partial y}=4 \cos (x+2 y)-2 x y$.
6. Let $v(s)$ be a smooth function of the real variable s and let $u(x, t):=v(x+3 t)$. Show that u satisfies the homogeneous partial differential equation $u_{t}-3 u_{x}=0$.

PART B: four traditional problems (15 points each, so 60 points).
$\mathrm{B}-1$. In an experiment, at time t you measure the value of a quantity R and obtain:

t	-1	0	1	2
R	-1	1	1	-3

Based on other information, you believe the data should fit a curve of the form $R=a+b t^{2}$.
a) Write the (over-determined) system of linear equations you would ideally like to solve for the unknown coefficients a and b.
b) Use the method of least squares to find the normal equations for the coefficients a and b.
c) Solve the normal equations to find the coefficients a and b.

B-2. Find and classify all the critical points of $f(x, y, z):=x^{3}-3 x+y^{2}+z^{2}$.
$\mathrm{B}-3$. For a certain rod of length π, the temperature $u(x, t)$ at the point x at time t satisfies the heat equation $u_{t}=u_{x x}$. Find all solutions of the special form

$$
u(x, t)=w(x) T(t) \quad \text { for } \quad 0 \leq x \leq \pi
$$

that satisfy the boundary conditions $u(0, t)=0$ and $u(\pi, t)=0$ for all $t \geq 0$.

B-4. Say the equation $f(X):=f(x, y, z)=0$ implicitly defines a smooth surface in \mathbb{R}^{3} (an example is the sphere $\left.x^{2}+y^{2}+z^{2}-4=0\right)$. Let $P \in \mathbb{R}^{3}$ be a point not on this surface. Assume Q is a point on the surface that is closest to P. Show that the vector from P to Q is orthogonal to the tangent plane to the surface at Q.
[Suggestion: Let $X(t)$ be a smooth curve in the surface with $X(0)=Q$. Then Q is the point on the curve that is closest to P.]

