Math 260 Exam 2 Jerry L. Kazdan
March 13, 2012 12:00 — 1:20

DIRECTIONS This exam has two parts. PART A has 6 short answer questions (7 points each, so 42
points) whilePART B has 4 traditional problems (15 points each, so 60 points). Total: 102 points.
Neatness counts.

Closed book, no calculators, computers, ipods, cell phomes, etc — but you may use one 3” x 5" card
with notes on both sides.

PART A: Six short answer questions (7 points each, so 42 points).
1. Find a 3 x 3 symmetric matrix A with the property that
(X, AX) = —x% + 6x129 — T123 + 22913 + 330%

for all X = (21, 29, 23) € R3.

SOLUTION: A :=

O ol

)
1 3
3 3
;1

2. Under what conditions on the constants a, b, ¢, and d is the following matrix A positive
definite?

O O O
o O o O
o0 O O
QUL O O O

SOLUTION: Let X := (z1,z2,23,24) Then
(X, AX) = ax? 4+ bx + cal +dai >0 forall X #0

if and only if ¢ >0, b>0, ¢>0,and d>0.

3. Let B be an anti-symmetric n x n real matrix, so B* = —B. Show that (V, BV) =0 for all
V eR".
SoruTioN: (V, BV) =(B*V, V) = —(BV, V) = —(V, BV). Thus 2(V, BV) =0 and hence
(V, BV) =0.

4. Find the arc length of the segment of the helix X (¢) := (cos3t,1 — 4t,sin3t), for 0 <t < 7.

T

SOLUTION: Arc length :/ | X'()|| dt. But X'(t) = (—3sin3t, —4,3cos3t) so || X'(t)|*> =
0

9sin? 3t 4+ 16 4+ 9cos? 3t = 25. Thus

Arc Length = / 5dt = 5.
0



2

0xdy

5. Find some function u(z,y) that satisfies = 4cos(z + 2y) — 2zy.
SoLuTION: First integrate with respect to z to find wuy(z,y) = 4sin(x + 2y) — 2%y + g(z),
where the “constant” of integration, g(y), is any function of y. Now integrate with respect to

y:

2202
u(z,y) = — 2cos(x + 2y) — Ty + /g(y) dy + h(x)

x2y2

= —2cos(x + 2y) — 5

+ f(y) + h(2),

where f(y) and h(x) are any functions of their variables. Since the problem only asked for
“some function”, we can choose f(y) =0 and h(x) = 0.

Note that we could have first integrated with respect to y.

6. Let v(s) be a smooth function of the real variable s and let u(x,t) := v(x 4 3t). Show that u
satisfies the homogeneous partial differential equation u; — 3u, = 0.

SOLUTION: Let v" denote the derivative of v. Then by the chain rule u,(z,t) = v'(x + 3t) - 1
and u(z,t) = v'(x + 3t) - 3. Thus 3ug(x,t) = u(z,t) as desired.

PART B: Four traditional problems (15 points each, so 60 points).

B-1. In an experiment, at time ¢ you measure the value of a quantity R and obtain the data:

t (|-1]0]1| 2

Ri-1]1(1]-3

Based on other information, you believe this data should fit a curve of the form R = a+bt?.

a) Write the (over-determined) system of linear equations you would ideally like to solve for
the unknown coefficients a and b.

SOLUTION:
at+b=-1
a+0=1
a+b= 1
a+4b=-3



b) Use the method of least squares to find the normal equations for the coefficients a and b.

11 —1
10 a 1
SOLUTION: Let A := Rk V.= <b> ) and w = 1
1 4 -3

The normal equations are A*AV = A*w, that is,

(6 1) )= ()

c) Solve the normal equations to find the coefficients a and b.

SoLUTION: These equations are

da +6b=—2 . 20 +3b=—-1
that is,
6a 4+ 180 = — 12 a+3b=-—2
The solution is @ = 1, b = —1. Thus the equation of the least squares curve is R = 1 —t2.

B-2. Find and classify all the critical points of f(z,y, z) := 2% — 3z + y? + 22.

SoLUTION: The critical points are where Vf = 0, that is, 0 = f, = 322> — 3z, 0 = fy =2y,
and 0 = f, =2z. Thus x = +1, y =0, and z = 0. The critical points are thus P; := (1,0,0),
P, =(-1,0,0).

To classsify these we use the second derivative (“Hessian”) matrix

6z 0 O
fey,z)=10 2 0
0 0 2
In particular,
6 0 0 -6 0 0
f”(Pl):f//(lvlal): 020 and f”(PZ):f”(_lalal): 0 20
0 0 2 0 0 2

Since f”(Py) is positive definite, f has a local min at P;. However, two of the diagonal
elements of f”(P,) have opposite sign so it is indefinite. Hence f has a saddle point at Ps.

B-3. For a certain rod of length 7, the temperature u(z,t) at the point x at time ¢ satisfies the
heat equation u; = u,,. Find all solutions of the special form

u(z,t) = w(x)T(t) for 0<z<m

that satisfy the boundary conditions u(0,¢) = 0 and w(m,t) = 0 for all ¢ > 0. [We seek the
non-trivial solutions, that is, other than the important but uninteresting solution u(z,t) =0.]



SOLUTION:  Note that the boundary conditions imply 0 = u(0,¢t) = w(0)T(¢t) and 0 =
u(m,t) = w(m)T(t) for all t > 0. Consequently w(0) =0 and w(w) = 0.

Substituting u(x,t) = w(x)7T(t) into the heat equation and separating variables we get

1 dT(t) 1 d*w(x)

T dt  w(z) dzz
where « is a constant. Thus
dT
w” = aw and — =aoT.
dt

We claim that « < 0 (this is a key step). To show this, multiply both sides of w”(z) = aw(z)
by w(x) and integrate over the rod. Then integrate by parts and use the boundary conditions
w(0) = w(m) =0 to get

a/oﬂw(a:)2 dz = /Oﬂw(x)w"(:z) do = — /OW w'(z)? dz < 0.

This already implies that o < 0. However, if a = 0 then w'(z)? = 0 so w(z) = constant.
But w(0) = 0. Thus w(x) = 0. This gives the trivial solution u(z,t) = 0 which we discard.
Consequently a < 0 so we write a = —\2.

Thus w”(x) + A2w(x) = 0 whose general solution is w(z) = A cos Az + Bsin Axz. The boundary
condition w(0) = 0 implies A = 0 while the boundary condition w(w) = 0 implies Bsin Aw =
0. We exclude the possibility that B = 0 since this gives us the trivial solution u(x,t) = 0.
Consequently, sin \m =0, s0 A =k =1,2,... and o = —k? so the solution of dT'/dt = oT is
T(t) = Ce Ft.

Collecting our results we have the special solutions

ug(z,t) = Cy sin(kx)e_th, k=1,2,....

B-4. Say the equation f(X) := f(z,y,2) = 0 implicitly defines a smooth surface in R (an example
is the sphere x2 4+ 9% + 22 —4 = 0). Let P € R? be a point not on this surface. Assume Q is
a point on the surface that is closest to P. Show that the vector from P to @ is orthogonal
to the tangent plane to the surface at Q.

[SUGGESTION: Let X(t) be a smooth curve in the surface with X (0) = @). Then @ is the
point on the curve that is closest to P.]

SoLUTION: Using the curve X (t), let h(t) := || X (t) — P||?>. Since h(t) is minimized at t = 0,
then A/(0) = 0. Now h(t) = (X (t) — P, X(t) — P) so

() = (X'(t), X(t) = P) + (X(t) = P, X'(t)) = 2(X"(¢), X(t) — P).

At t = 0 this gives
0= <X/(0)7 Q- P>7



that is, the vector Q — P is perpendicular to the vector X’(0) that is tangent to the surface
at @. Since ths is true for any tangent vector at @, the vector () — P is perpendiculat to the
whole tangent plane at @.

REMARK: You can also prove this result using Lagrange Multipliers.

NOTE: A common error was to take the derivative of ||@Q — P||*. This fails because P and
Q are specified points so the derivative of the constant ||Q — P||? is zero for trivial reasons. It
gives no information.



