Directions This exam has two parts. Part A has 4 short answer questions (10 points each, so 40 points) while Part B has 4 traditional problems (15 points each, so 60 points). Total: 100 points. Neatness counts.
Closed book, no calculators, computers, ipods, cell phones, etc - but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides.

Part A: Four short answer questions (10 points each, so 40 points).
A-1. Let $f(x):=\int_{0}^{x}\left(\int_{0}^{t} g(s) d s\right) d t$ for $x \geq 0$. Rewrite this as an iterated integral with the order of integration reversed, so one first integrates with respect to t.

For the next 3 problems, $\gamma(t)=(x(t), y(t)), a \leq t \leq b$, is a smooth curve in the plane and we consider the line integral $J:=\int_{\gamma} p(x, y) d x+q(x, y) d y$. Give a proof or counterexample for each of the following.

A-2. If $\gamma(t)$ is a horizontal line segment and $p(x, y)=0$ on this segment, then $J=0$.

A-3. If $\gamma(t)$ is a vertical line segment and $p(x, y)=0$ on this segment, then $J=0$.

A-4. If $p(x, y) \geq 0$ and $q(x, y) \geq 0$ on γ, and if in defining γ we know that $d x / d t>0$ and $d y / d t>0$, then $J \geq 0$.

Part B: Four traditional problems (15 points each, so 60 points).
B-1. Let $\mathbf{F}=y \mathbf{i}+(3+2 x) \mathbf{j}+2 \mathbf{k}$, and $\gamma(t)$ be the straight line from $(0,0,0)$ to $(1,2,-3)$. Compute $\int_{\gamma} \mathbf{F} \cdot d \mathbf{s}$.

B-2. Let $G(x):=\int_{a(x)}^{b(x)} f(t) d t$, where $a(x)$ and $b(x)$ are smooth functions with $a(x)<b(x)$, and $f(x)$ is a continuous function. Compute $d G(x) / d x$.

B-3. Compute $\iint_{\mathbb{R}^{2}} \frac{d x d y}{\left[4+(x-y)^{2}+(x+2 y)^{2}\right]^{2}}$

B-4. Let the surface $S \subset \mathbb{R}^{3}$ be the graph of $z=g(x, y)$ for (x, y) in a region D in the $x y$ plane.
a) Using the parameters $x=u, y=v, z=g(u, v)$, derive the formula

$$
\operatorname{Area}(S)=\iint_{D} \sqrt{1+\|\nabla g\|^{2}} d x d y
$$

b) Apply this to compute the surface area of the part of the plane $x+2 y+z=2$ in the first octant $x \geq 0, \quad y \geq 0, \quad z \geq 0$.

