Directions This exam has two parts. Part A has 4 short answer questions (10 points each, so 40 points) while Part B has 4 traditional problems (15 points each, so 60 points). Total: 100 points. Neatness counts.
Closed book, no calculators, computers, ipods, cell phones, etc - but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides.

Part A: Four short answer questions (10 points each, so 40 points).
A-1. Let $f(x):=\int_{0}^{x}\left(\int_{0}^{t} g(s) d s\right) d t$ for $x \geq 0$. Rewrite this as an iterated integral with the order of integration reversed, so one first integrates with respect to t.

Solution: In the st-plane the region of integration is the triangle with vertices at $(0,0)$, $(0, x)$, and (x, x). Draw a sketch! If you integrate first with respect to t, you get

$$
J=\int_{0}^{x}\left(\int_{s}^{x} g(s) d t\right) d s=\int_{0}^{x}(x-s) g(s) d s
$$

REMARK: If you solve $f^{\prime \prime}=g$ with initial conditions $f(0)=0$ and $f^{\prime}(0)=0$ by integrating twice, you get the first formila for J. Interchanging the order of integration gives the second, which is a bit simpler. You can also get the second version from the first by an integration by parts.

For the next 3 problems, $\gamma(t)=(x(t), y(t)), a \leq t \leq b$, is a smooth curve in the plane and we consider the line integral $J:=\int_{\gamma} p(x, y) d x+q(x, y) d y$. Give a proof or counterexample for each of the following.

A-2. If $\gamma(t)$ is a horizontal line segment and $p(x, y)=0$ on this segment, then $J=0$.
Solution: Parametrize the horizontal line segment, say $a \leq x \leq b$ as $\gamma(t)=(t, c)$, where $a \leq t \leq b$. Then $d x / d t=1$ and $d y / d t=0$. Thus

$$
J:=\int_{\gamma}\left[p(x, y) \frac{d x}{d t}+q(x, y) \frac{d y}{d t}\right] d t=\int_{a}^{b}\left[0 \frac{d x}{d t}+q(x, y) 0\right] d t=0
$$

A-3. If $\gamma(t)$ is a vertical line segment and $p(x, y)=0$ on this segment, then $J=0$.
Solution: If $\alpha \leq y \leq \delta$ and $x=c$, write the curve as $\gamma(t)=(c, t)$, with , $\alpha \leq t \leq \delta$. Then $d x / d t=0$ and

$$
J:=\int_{\gamma}\left[p(x, y) \frac{d x}{d t}+q(x, y) \frac{d y}{d t}\right] d t=\int_{\alpha}^{\beta}[0+q(c, t) t] d t
$$

It is easy to pick q so that this is not zero - and we get a counterexample. For instance use $q(x, y) \equiv 1$.

A-4. If $p(x, y) \geq 0$ and $q(x, y) \geq 0$ on γ, and if in defining γ we know that $d x / d t>0$ and $d y / d t>0$, then $J \geq 0$.

Solution: Just as above,

$$
J:=\int_{\gamma}\left[p(x, y) \frac{d x}{d t}+q(x, y) \frac{d y}{d t}\right] d t
$$

but now all the terms in the integrand are non-negative. Hence $J \geq 0$.

Part B: Four traditional problems (15 points each, so 60 points).
$\mathrm{B}-1$. Let $\mathbf{F}=y \mathbf{i}+(3+2 x) \mathbf{j}+2 \mathbf{k}$, and $\gamma(t)$ be the straight line from $(0,0,0)$ to $(1,2,-3)$. Compute $\int_{\gamma} \mathbf{F} \cdot d \mathbf{s}$.
Solution: First note

$$
\int_{\gamma} \mathbf{F} \cdot d \mathbf{s}=\int_{\gamma} \mathbf{F}(\gamma(t)) \cdot \frac{d \gamma}{d t} d t
$$

Parametrize γ as $\gamma(t)=(t, 2 t,-3 t)$, for $0 \leq t \leq 1$. Then $\gamma^{\prime}(t)=(1,2,-3)$ and on γ we have

$$
\begin{aligned}
\mathbf{F}(\gamma(t)) \cdot \frac{d \gamma}{d t} & =(2 t, 3+2 t, 2) \cdot(1,2,-3) \\
& =2 t+2(3+2 t)-6=6 t
\end{aligned}
$$

Therefore

$$
\int_{\gamma} \mathbf{F} \cdot d \mathbf{s}=\int_{0}^{1} 6 t d t=3
$$

B-2. Let $G(x):=\int_{a(x)}^{b(x)} f(t) d t$, where $a(x)$ and $b(x)$ are smooth functions with $a(x)<b(x)$, and $f(x)$ is a continuous function. Compute $d G(x) / d x$.

Solution: For real numbers $p<q$ let $H(p, q):=\int_{p}^{q} f(t) d t$, Then $G(x)=H(a(x), b(x))$ so by the chain rule with $p=a(x)$, and $q=b(x)$

$$
\begin{aligned}
\frac{d G}{d x} & =\frac{\partial H}{\partial p} \frac{d p}{d x}+\frac{\partial H}{\partial q} \frac{d q}{d x} \\
& =-f(a(x)) \frac{d a}{d x}+f(b(x)) \frac{d b}{d x} \\
& =f(b(x)) \frac{d b}{d x}-f(a(x)) \frac{d a}{d x}
\end{aligned}
$$

B-3. Compute $J:=\iint_{\mathbb{R}^{2}} \frac{d x d y}{\left[4+(x-y)^{2}+(x+2 y)^{2}\right]^{2}}$
Solution: Since we recognize that $\iint_{\mathbb{R}^{2}} \frac{d u d v}{\left[4+u^{2}+v^{2}\right]^{2}}$ is probably doable by using polar coordinates, it is natural to try the preliminary substitution $u=x-y, v=x+2 y$. Then

$$
\frac{\partial(u, v)}{\partial(x, y)}=\operatorname{det}\left(\begin{array}{rr}
1 & -1 \\
1 & 2
\end{array}\right)=3 \quad \text { so } \quad d u d v=3 d x d y
$$

Thus,

$$
J=\iint_{\mathbb{R}^{2}} \frac{1}{\left[4+u^{2}+v^{2}\right]^{2}} \frac{d u d v}{3}
$$

Now we change to polar coordinates, $u=r \cos \theta, v=r \sin \theta$ and find

$$
J=\frac{1}{3} \int_{0}^{2 \pi}\left(\int_{0}^{\infty} \frac{1}{\left[4+r^{2}\right]^{2}} r d r\right) d \theta=\frac{\pi}{12}
$$

B-4. Let the surface $S \subset \mathbb{R}^{3}$ be the graph of $z=g(x, y)$ for (x, y) in a region D in the $x y$ plane.
a) Using the parameters $x=u, y=v, z=g(u, v)$, derive the formula

$$
\operatorname{Area}(S)=\iint_{D} \sqrt{1+\|\nabla g\|^{2}} d x d y
$$

Solution: We begin with the formula for the area of a surface defined parametrically over a region Ω in the (u, v) parameter space:

$$
\operatorname{Area}(S)=\iint_{\Omega}\left\|T_{u} \times T_{v}\right\| d u d v
$$

where $T_{u}=\left(x_{u}, y_{u}\right)$ and $T_{v}=\left(x_{v}, y_{v}\right)$ are tangent vectors on the surface. In this special case, $T_{u}=\left(1,0, g_{u}(u, v)\right.$ and $T_{v}=\left(0,1, g_{v}(u, v)\right.$. Then by a routine computation, $T_{u} \times$ $T_{v}=\left(-g_{u},-g_{v}, 1\right)$ so $\left\|T_{u} \times T_{v}\right\|=\sqrt{1+g_{u}^{2}+g_{v}^{2}}$. Since $u=x$ and $v=y$, we conclude

$$
\operatorname{Area}(S)=\iint_{\Omega} \sqrt{1+g_{u}^{2}+g_{v}^{2}} d u d v=\iint_{D} \sqrt{1+\|\nabla g\|^{2}} d x d y
$$

b) Apply this to compute the surface area of the part of the plane $x+2 y+z=2$ in the first octant $x \geq 0, \quad y \geq 0, \quad z \geq 0$.
Solution: Here $z=g(x, y)=2-x-2 y$ so $\nabla g=(-1,-2)$ and $\|\nabla g\|^{2}=5$.
The plane passes through the three points $(2,0,0),(0,1,0),(0,0,2)$ and intersects the horizontal plane, $z=0$, in the line $x+2 y=2$. Thus the region D is the triangle in the $x y$-plane bounded by the x-axis, the y-axis, and the line $x+2 y=2$. This gives

$$
\operatorname{Area}(S)==\int_{0}^{1}\left(\int_{0}^{2-2 y} \sqrt{1+5} d x\right) d y=\sqrt{6} \int_{0}^{1}(2-2 y) d y=\sqrt{6}
$$

